\[\cong \int_{D \times D} \mathcal{D}(A \oplus B, D) \otimes \mathcal{D}(D_1, A) \otimes \mathcal{D}(D_2, B) \]
\[\cong \int_{\mathcal{D} \times \mathcal{D}} \mathcal{D}(D_1, A) \otimes \mathcal{D}(D_2, B) \otimes \mathcal{D}(A \oplus B, D) \]
\[\cong \mathcal{C}((D_1, D_2), (A, B)) \otimes F((A, B)) \]
\[\text{where } \mathcal{C} := \mathcal{D} \times \mathcal{D} \text{ and } F((A, B)) := \mathcal{D}(A \oplus B, D) \]
\[\cong F((D_1, D_2)) \quad \text{by Proposition 3.2.25} \]
\[\cong \mathcal{D}(D_1 \oplus D_2, D) - (\mathcal{D}_D \mathcal{D}_D)_D. \]

The following is proved by Mandell et al in [MMSS01, 22.1] in the case of topological categories.

Proposition 3.3.15. Lax symmetric monoidal functors and commutative algebras. The category of (commutative) monoids in \([\mathcal{D}, \mathcal{V}]\) is isomorphic to that of lax (symmetric) monoidal functors \(\mathcal{D} \rightarrow \mathcal{V}\) (Definition 2.6.19).

Proof. Let \(R : \mathcal{D} \rightarrow \mathcal{V}\) be lax (symmetric) monoidal. Then, in the notation of Definition 2.6.19, we have a unit map \(\iota : 1 \rightarrow R(0)\) and a natural transformation \(\mu : R(\cdot) \otimes R(\cdot) \rightarrow R(\cdot \oplus \cdot)\). By the definition of the tensored Yoneda functor \(F^0\) and the Yoneda functor \(1 \rightarrow \mathcal{V}\) of Yoneda Lemma 2.2.10, the maps \(\iota\) and \(\mu\) determine and are determined by the maps \(\eta : 1 \rightarrow R\) and \(m : R \oplus R \rightarrow R\) of Definition 2.6.58 that give \(R\) the structure of a (commutative) monoid. \(\square\)

3.4 Simplicial sets and simplicial spaces

The category of simplicial sets is a convenient combinatorial substitute for that of topological spaces and a widely used tool in homotopy theory. A thorough modern account can be found in [GJ99].

3.4A The category of finite ordered sets

Let \(\Delta\) be the category of finite ordered sets \([n] - \{0, 1, \ldots, n\}\) and order preserving maps. It is an easy exercise to show that any such map can be written as a composite of the following ones:

- the **face maps** \(d_i : [n - 1] \rightarrow [n]\) for \(0 \leq i \leq n\), where \(d_i\) is the order preserving monomorphism that does not have \(i\) in its image and
- the **degeneracy maps** \(s_i : [n + 1] \rightarrow [n]\) for \(0 \leq i \leq n\), where \(s_i\) is the order preserving epimorphism sending \(i\) and \(i + 1\) to \(i\).

These satisfy the **simplicial identities**:
(i) $d_i d_j = d_{i-1} d_j$ for $i < j$
(ii) $d_i s_j = s_{j-1} d_i$ for $i < j$
(iii) $d_i s_j = id$ for $i = j$ and for $i = j + 1$
(iv) $d_j s_j = s_1 d_{j-1}$ for $i > j + 1$
(v) $s_i s_j = s_j s_{i-1}$ for $i > j$.

Definition 3.4.1. A simplicial set X is a functor $\Delta^{op} \to \mathcal{S}et$. It is common to denote its value on $[n]$ by X_n and call it the set of n-simplices of X. A simplicial set X thus consists of a collection of sets X_n for $n \geq 0$, along with face maps $d_i : X_n \to X_{n-1}$ and degeneracy maps $s_i : X_n \to X_{n+1}$ for $0 \leq i \leq n$ satisfying the identities (i)–(v) above. A simplex is nondegenerate if it is not in the image of any degeneracy map s_i. The category $\mathcal{S}et_\Delta$ of simplicial sets is the category of such functors with natural transformations as morphisms.

More generally a simplicial object X in a category \mathcal{C} is a functor $X : \Delta^{op} \to \mathcal{C}$. It is common to write it as X_\bullet, to emphasize its simplicial nature. We denote the category of simplicial objects in \mathcal{C} by \mathcal{C}_Δ.

Similarly a cosimplicial object Y in a category \mathcal{C}, sometimes denoted by Y^\bullet, is a \mathcal{C} valued functor on Δ whose value on $[n]$ is denoted by Y^n. It consists of a collection of objects Y^n in \mathcal{C} for $n \geq 0$, along with coface maps $d^i : Y^{n-1} \to Y^n$ and codegeneracy maps $s^i : Y^{n+1} \to Y^n$ for $0 \leq i \leq n$ satisfying identities dual to (i)–(v) above. We denote the category of cosimplicial objects in \mathcal{C} by \mathcal{C}^Δ. In particular, a cosimplicial space is an object in the category \mathcal{Top}^{Δ} of functors $\Delta \to \mathcal{Top}$.

For an object C in \mathcal{C}, we denote by $cc_u(C)$ the constant simplicial object at C, the functor $\Delta^{op} \to \mathcal{C}$ sending each object to C and each morphism to 1_C. The constant cosimplicial object at C, $cc_c(X)$ is similarly defined.

Simplicial sets are ubiquitous in homotopy theory, but cosimplicial sets are rarely considered. Cosimplicial spaces are more common.

Definition 3.4.2. The cosimplicial space Δ^*, the cosimplicial standard simplex, is the functor $[n] \mapsto \Delta^n$, where the standard n-simplex Δ^n is the space

$$\Delta^n = \left\{ (t_0, t_1, \ldots, t_n) \in \mathbb{R}^{n+1} : t_i \geq 0 \text{ and } \sum_i t_i = 1 \right\}.$$

It is homeomorphic to the n-disk D^n. Its boundary $\partial \Delta^n$ is the set of points with at least one coordinate equal to 0; it is homeomorphic to S^{n-1}. The ith face Δ^n_i for $0 \leq i \leq n$ is the set of points with $t_i = 0$; it is homeomorphic to D^{n-1}. The ith horn Λ^n_i is the complement of the interior of the ith face in the boundary, the set of points with at least one vanishing coordinate and with $t_i > 0$. It is also homeomorphic to D^{n-1}.

It is an inner horn if $0 < i < n$; otherwise it is an outer horn.
The cosimplicial standard simplicial set $\Delta[\bullet]$ (called the cosimplicial standard simplex in [Hir03, Definition 15.1.15]) is the functor $[n] \mapsto \Delta[n]$, where the simplicial set $\Delta[n]$ (also called the standard n-simplex) is given by

$$\Delta[n]_k = \Delta([k],[n]).$$

The singular chain complex for Y is obtained from the free abelian groups on these sets by defining a boundary operator in terms of the face maps d_i.

Definition 3.4.3. The geometric realization $|X|$ (or $\mathcal{R}e(X)$) of a simplicial set X is the coend (Definition 2.4.5)

$$|X| := \int \Delta X_n \times \Delta^n.$$

This means the topological space $|X|$ is the quotient of the union of all of the simplices of X,

$$\bigsqcup_n X_n \times \Delta^n,$$

obtained by gluing them together appropriately. Equivalently it is the quotient of a similar disjoint union using only the nondegenerate simplices of X. In particular the space Δ^n is $|\Delta[n]|$ for the simplicial set $\Delta[n]$ of Definition 3.4.2.

The geometric realization $|X|$ of a simplicial space X is similarly defined as a quotient of the union of the spaces $X_n \times \Delta^n$, whose topologies are determined by those of the spaces X_n as well the spaces Δ^n.

Remark 3.4.4. Following common practice, we are using the term “standard n-simplex” for both the topological space Δ^n and the simplicial set $\Delta[n]$ of Definition 3.4.2 in hopes that the distinction between the two will be clear from the context. Note that $|\Delta[n]| \cong \Delta^n$, so $|\Delta[\bullet]| \cong \Delta^\bullet$.

Remark 3.4.5. The realization of a bisimplicial set. It follows from the definitions that the coend

$$\int \Delta X_n \times \Delta[n]$$

is the simplicial set X itself. Now suppose that X is a bisimplicial set, meaning a simplicial object in the category of simplicial sets or equivalently set valued functor on $\Delta^{op} \times \Delta^{op}$. Then in the coend above, each X_n is itself a simplicial set, and the coend is another simplicial set $|X|$. Hirschhorn [Hir03, Definition 15.11.1] calls this the realization of the bisimplicial set X. In [Hir03, Theorem 15.11.6] he shows that it is naturally isomorphic to the diagonal simplicial set

$$\Delta^{op} \xrightarrow{\text{diag}} \Delta^{op} \times \Delta^{op} \xrightarrow{X} \mathcal{S}et.$$ (3.4.6)
Definition 3.4.7. The singular functor. For a topological space Y the simplicial set $\text{Sing}(Y)$ (the singular complex of Y) is given by letting $\text{Sing}(Y)_n$ be the set of all continuous maps $\Delta^n \to Y$. The face and degeneracy operators are defined in terms of the coface and codegeneracy operators on Δ.

The following is proved by May in [May67, 14.1].

Proposition 3.4.8. $|X|$ as a CW complex. The geometric realization $|X|$ of a simplicial set X is a CW complex with one n-cell for each nondegenerate n-simplex of X.

Similarly we have a map

$$\coprod_n X_n \to \bigwedge \Delta X_n,$$

which is the set $\pi_0 |X|$ of path connected components of $|X|$. Thus collapsing each Δ^n to a point in Definition 3.4.3 gives a map

$$|X| - \bigwedge \Delta^n X_n \xrightarrow{e} \bigwedge \Delta X_n = \pi_0 |X|.$$ \hspace{1cm} (3.4.9)

A simplicial space X, i.e., a functor $X : \Delta^{op} \to \textbf{T}_{\text{op}}$, has a geometric realization $|X|$ defined as in Definition 3.4.3, but with the not necessarily discrete topology of X_n taken into account.

For a simplicial set X, $|X[n]|$ is the n-skeleton of the CW complex $|X|$.

The following was proved by Kan in [Kan58a].

Proposition 3.4.10. The equivalence of \textbf{Set}_Δ and \textbf{T}_{op} and of their pointed analogs. As a functor from \textbf{Set}_Δ to \textbf{T}_{op}, geometric realization of Definition 3.4.3 is the left adjoint of Sing, the singular functor of Definition 3.4.7. The adjunction $|\cdot| : \textbf{Set}_\Delta \rightleftarrows \textbf{T}_{\text{op}} : \text{Sing}$ and its pointed analog are equivalences of categories.

In particular for an arbitrary space X one has a weak homotopy equivalence $|\text{Sing}(X)| \to X$ whose source is a CW complex. For this reason, e.g., in [BK72] (the “yellow monster”), the terms “space” and “simplicial set” are sometimes used interchangeably.

Definition 3.4.11. Topological and simplicial categories.

(i) When $\mathcal{V} = (\textbf{T}_{\text{op}}, \times, *)$, we say that a \mathcal{V}-category is a topological category. We denote the category of topological categories by CAT_{TOP} and that of small topological categories by Cat_{TOP}.

(ii) When $\mathcal{V} = (\mathcal{T}, \land, S^0)$, we say that a \mathcal{V}-category is a pointed topological category. We denote the category of pointed topological categories by CAT_T and that of small pointed topological categories by Cat_T.

3.4 Simplicial sets and simplicial spaces

(iii) When $\mathcal{V} = (\text{Set}_\Delta \times \ast, \ast)$, we say that a \mathcal{V}-category is a simplicial category. We denote the category of simplicial categories by CAT_Δ and that of small simplicial categories by Cat_Δ.

(iv) When $\mathcal{V} = (\text{Set}_\Delta \times \ast, S^0)$, we say that a \mathcal{V}-category is a pointed simplicial category. We denote the category of simplicial categories by CAT_Δ and that of small pointed simplicial categories by Cat_Δ.

We will see below in Corollary 5.6.16 that every topological model category is also a simplicial one.

The adjunction

$$| \cdot | : \text{Set}_\Delta \xrightarrow{\sim} \text{Top} : \text{Sing}$$

leads to

$$| \cdot | : \text{CAT}_\Delta \xrightarrow{\sim} \text{CAT}_{\text{Top}} : \text{Sing}$$

(see Definition 3.4.11) in the obvious way. Given a simplicial category \mathcal{C}, we define the topological category $|\mathcal{C}|$ to have the same objects as \mathcal{C} with morphism spaces

$$|\mathcal{C}|(X,Y) = |\mathcal{C}(X,Y)|,$$

and given a topological category \mathcal{D}, we define the simplicial category $\text{Sing}(\mathcal{D})$ to have the same objects as \mathcal{D} with simplicial morphisms sets

$$\text{Sing}(\mathcal{D})(X,Y) = \text{Sing}(\mathcal{D}(X,Y)).$$

3.4B The nerve of a small category

Definition 3.4.12. The nerve and classifying space of a small (topological) category. For a small category J, the nerve $N(J)$ is the simplicial set given by

$$N(J)_n = \text{Cat}([n], J)$$

where $[n]$ here denotes the linearly ordered set $\{0, \ldots, n\}$ regarded as a category. The classifying space BJ is the geometric realization of the nerve, $|N(J)|$.

For a small topological category \mathcal{D}, the similarly defined nerve $N(\mathcal{D})$ is a simplicial space whose geometric realization (see Definition 3.4.3) is the classifying space $B\mathcal{D}$.

In other words, $N(J)_n$ is the set of diagrams in J of the form

$$j_0 \to j_1 \to \cdots \to j_{n-1} \to j_n.$$ \hfill (3.4.13)

Of the $n + 1$ face maps $N(J)_n \to N(J)_{n-1}$, $n - 1$ are obtained by composing each of the $n-1$ pairs of adjacent arrows above, and the other two are obtained