Math 443

Final exam
December 13, 2021

Name:

Pledge of Honesty
I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: __

Problems begin below, and there are two blank pages to write your answer on following each of five problems.

1. 3-manifold homology question. (30 points.) Find the homology of the 3-manifold obtained by “attaching k handles” to the 3-sphere S^3. “Attaching a handle” to a 3-manifold means M the following:

 - Remove two disjoint open disks from M, thus obtaining a manifold M' bounded by two copies of S^2.
 - The cylinder $S^2 \times I$ is another 3-manifold with the same boundary.
 - Form a new closed 3-manifold N by identifying the boundaries of M' and $S^2 \times I$.

One can use the Mayer-Vietoris sequence to compute $H_* M'$ in terms of $H_* M$, and $H_* N$ in terms of $H_* M'$. You can assume that $H_3 X = 0$ for a connected 3-manifold with boundary X, and that $H_3 Y = \mathbb{Z}$ for a connected 3-manifold without boundary Y.

Starting with S^3, do the above k times to obtain a 3-manifold M_k. Equivalently, one could remove $2k$ disjoint open disks from S^3 and identify the resulting boundary with that of k copies of $S^2 \times I$.

Note that the 2-dimensional analog of this process leads from S^2 to a surface of genus k.

Page 1 of 15
Workspace for problem 1 continued.
Workspace for problem 1 continued.
2. **Infinite graph question.** (30 points.) Consider the infinite graph \(K \) in \(\mathbb{R}^3 \) with vertex set

\[
\{(i, j, k) \in \mathbb{R}^3 : i, j, k \in \mathbb{Z}\} \cup \left\{ \left(\frac{2i+1}{2}, \frac{2j+1}{2}, \frac{2k+1}{2} \right) : i, j, k \in \mathbb{Z} \right\}
\]

in which each vertex of the form \((x, y, z)\) is connected by an edge to the eight neighboring vertices

\[
\left\{ \left(x \pm \frac{1}{2}, y \pm \frac{1}{2}, z \pm \frac{1}{2} \right) \right\}.
\]

Thus the center of each edge is a point in the set

\[
\left\{ \left(i \pm \frac{1}{4}, j \pm \frac{1}{4}, k \pm \frac{1}{4} \right) : i, j, k \in \mathbb{Z} \right\}.
\]

The two endpoints for such an edge with a given combination of signs are

\[
(i, j, k) \quad \text{and} \quad \left(i \pm \frac{1}{2}, j \pm \frac{1}{2}, k \pm \frac{1}{2} \right)
\]

with the same combination of signs in the second point.

Let \(L \) be the set of points within \(\epsilon \) of \(K \), for some positive \(\epsilon < 1/4 \). It is a noncompact compact 3-manifold with boundary in \(\mathbb{R}^3 \). Its boundary \(M \) is a noncompact surface.

The group \(G = \mathbb{Z}^3 \) acts freely \(\mathbb{R}^3 \) by translation, with \((i, j, k) \in \mathbb{Z}^3 \) sending \((x, y, z) \in \mathbb{R}^3 \) to \((x+i, y+j, z+k)\). Hence it acts freely on both \(K \) and \(M \). Describe the finite orbit graph \(K/G \) and find the genus of the compact orbit surface \(M/G \). Both \(K/G \) and \(M/G \) are contained in the 3-dimensional torus \(\mathbb{R}^3/G \cong S^1 \times S^1 \times S^1 \), which is also a quotient of the unit cube.
Workspace for problem 2 continued.
Workspace for problem 2 continued.
3. **Euler characteristic question.** (20 points.) Let X be a finite graph with V vertices and E edges. Embed it in \mathbb{R}^3 (there is a theorem saying that any graph can be embedded in 3-space; there are some that cannot be embedded in the plane) and let Y be the space of all points within ϵ (a sufficiently small positive number) of the image of X. It is a 3-manifold bounded by a surface M. Find the Euler characteristic $\chi(M)$ and prove your answer.

Hint: Think of the building set in the lounge, the one with steel balls and black magnetic rods. We are going to build something with V balls and E rods. Find the Euler characteristic of the set of V 2-spheres bounding the V balls. Think about how the Euler characteristic of the surface changes each time you add a rod. *You may use the fact that*

$$\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$$

under suitable hypotheses on A and $B.
Workspace for problem 3 continued.
Workspace for problem 3 continued.
4. **Complete bipartite graph question.** (20 POINTS.) A *bipartite graph* is one in which the vertices fall into two disjoint sets, say red and blue vertices, and each edge connects a red vertex to a blue one. It is *complete* if there is a unique edge connecting each red vertex to each blue one.

Let $K_{m,n}$ denote the complete bipartite graph with m red vertices and n blue ones. Hence it has mn edges.

Show that if $K_{m,n}$ can be embedded in a closed oriented surface of genus g, then

$$g \geq \frac{(m - 2)(n - 2)}{4}.$$

In particular, $g > 0$, so the graph is nonplanar, for $m = n = 3$. $K_{3,3}$ is known as the houses and utilities graph.
Workspace for problem 4 continued.
Workspace for problem 4 continued.
5. **Brouwer Fixed Point question.** (20 points) Prove the 2-dimensional case of the Brouwer Fixed Point Theorem, i.e., that any continuous map of the 2-dimensional disk D^2 to itself has a fixed point. You may assume $\pi_1 S^1 = \mathbb{Z}$.
Workspace for problem 5 continued.
Workspace for problem 5 continued.