Math 430 Take-Home Midterm Due November 10

1. Let A be a Dedekind domain in a field K, and let L and L' be finite separable extensions of K, with B and B' the integral closures of A in L and L' respectively. Suppose there is a prime \mathfrak{p} of A such that $\mathfrak{p}B = \mathfrak{q}^{[L:K]}$ (that is, \mathfrak{p} ramifies completely in B) and \mathfrak{p} does not ramify in B'. Show that $L \cap L' = K$. [Hint: How would \mathfrak{p} factor in the integral closure of A in $L \cap L'$?]

2. Let R be a local Noetherian ring with maximal ideal \mathfrak{m} , let $\phi : R \longrightarrow R/\mathfrak{m}^2$ and suppose that $x_1, \ldots, x_n \in \mathfrak{m}$ have the property that $\phi(x_1), \ldots, \phi(x_n)$ generate $\mathfrak{m}/\mathfrak{m}^2$ as an R-module. Show that x_1, \ldots, x_n generate \mathfrak{m} as an R-module [Hint: Let N be the module generated by x_1, \ldots, x_n . Show that M/N = 0]

3. 1. Let *L* be a degree *n* field extension of \mathbb{Q} . Let $B \subset L$ be a ring that is integral over \mathbb{Z} and has field of fractions *L*. Let $\sigma_1, \ldots, \sigma_n$ be the *n* distinct embeddings $\sigma : L \longrightarrow \mathbb{C}$. Show that for any basis w_1, \ldots, w_n for *B* as an *A*-module, we have

$$\Delta(B/\mathbb{Z}) = \left(\det[\sigma_i(w_j)]\right)^2$$

[Hint: Multiply $[\sigma_i(w_j)]$ by its transpose and use the fact (that you should prove, using results from class) that $T_{L/K}(y) = \sigma_1(y) + \cdots + \sigma_n(y)$ for any $y \in L$.]

- 4. (30 points) Suppose that d > 1 is a square-free integer such that $d \equiv 1 \pmod{9}$.
 - (a) Find a formula for the coefficients of the minimal monic polynomial f of $\theta_d = \frac{1+\sqrt[3]{d}+\sqrt[3]{d^2}}{3}$. Your answer should be a degree 3 polynomial. You may calculate f by looking at the characteristic polynomial for the multiplication-by- θ_d map on $\mathbb{Q}(\sqrt[3]{d})$ (or by any method that you choose). Feel free to use a matrix calculator or any other computation aid. Your formula should be quite simple. (It is very easy to see what the degree 2 term will be and the linear and constant terms have simple formulas in terms of d, though it may take you a while to find these formulas.)
 - (b) Show that θ_d is integral.
 - (c) Let $B = \mathbb{Z}[\sqrt[3]{d}, \theta_d]$. Find $|\Delta(B/\mathbb{Z})|$ and show that B is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{d})$. [Hint: There are not that many candidates for $|\Delta(B/\mathbb{Z})|$ since it must be $|\Delta(\mathbb{Z}[\theta_d]/\mathbb{Z})|$ divided by a square.]
 - (d) Let d = 10. Show that $\mathbb{Z}[\theta_d]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{d})$ by calculating $\Delta(\mathbb{Z}[\theta_d]/\mathbb{Z})$. (You may use any kind of calculation help you like for the discriminant.)
 - (e) Let d = 19. Show that $\mathbb{Z}[\theta_d]$ is *not* the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{d})$ by calculating the $\Delta(\mathbb{Z}[\theta_d]/\mathbb{Z})$. (You may use any kind of calculation help you like for the discriminant.)

5. Exercise 4 from Janusz, page 58. Restrict to the case where m is a prime number. (This simplifies somes versions of the proof.)

6. Exercise 7 from Janusz, page 58.