Math 430 Final Exam, Due December 18

1. Find the class group of $\mathbb{Z}[\sqrt{-14}]$. Show all of your work.

2. Let $d \equiv 3 \pmod{4}$ be a square-free positive integer and write $d = p_1 \cdots p_m$ for primes p_i . For each p_i , let \mathfrak{q}_i denote the unique prime in $\mathbb{Z}\begin{bmatrix}\frac{1+\sqrt{-d}}{2}\end{bmatrix}$ lying over p_i . Let 1 < m < d be a divisor of d, and let I be an integral ideal of $\mathbb{Z}\begin{bmatrix}\frac{1+\sqrt{-d}}{2}\end{bmatrix}$ such that |N(I)| = m. Let [I] denote the image of I in the class group of $\mathbb{Z}\begin{bmatrix}\frac{1+\sqrt{-d}}{2}\end{bmatrix}$.

- (a) Show that $[I] \neq 1$ (i... *I* is not principal). [Note that this is easy when $m \neq d/3$. It requires a special, though not especially difficult argument if m = d/3.]
- (b) Show that $[I^2] = 1$ (i.e. [I] has order 2 in the class group).
- (c) Show that there is a unique integral ideal $J \neq I$ with |N(J)| dividing d such that [IJ] = 1. [Hint: What should |N(J)| be?]

3. Let d be a square-free integer with d > 1. Suppose that the ring of integers in $\mathbb{Q}(\sqrt{-d})$ is a principal ideal domain (i.e. the class group is trivial). Note that on an earlier homework, we showed we must then have $d \equiv 3 \pmod{4}$, so this ring of integers is always $\mathbb{Z}[\frac{1+\sqrt{-d}}{2}]$. We also showed (both in the previous problem and earlier) that if d is not a prime, then the class group must be even, so we may assume that d is a prime number if we like.

Show that

- (a) If d > 8, then we must have $d \equiv 3 \pmod{8}$. [Hint: Consider the primes lying over 2 and note that our ring is of the form $\mathbb{Z}[\omega]$ where $\omega^2 \omega + (d+1)/4 = 0$.]
- (b) If d > 12, then we must have $d \equiv 1 \pmod{3}$. [Hint: Consider the primes lying over 3.]
- (c) If d > 20, then we must have $d \equiv 3 \pmod{5}$ or $d \equiv 2 \pmod{5}$. [Hint: Consider the primes lying over 5.]
- (d) Show that if d > 20, we must have $d \equiv 43 \pmod{120}$ or $d \equiv 67 \pmod{120}$. [Hint: Use the previous three parts plus the Chinese remainder theorem.]

4. Which of the following polynomials have roots in \mathbb{Q}_3 ? (Explain your answers). [You may use Hensel's lemma and the fact that \mathbb{Z}_3 is a DVR.]

- (a) $x^2 + 2;$
- (b) $x^3 + x + 1;$
- (c) $x^2 + 2x 2$.

5. For polynomials $f/g \in \mathbb{Q}(t)$, with $f, g \neq 0$, we define $v_t(f/g) = (\deg g) - (\deg f)$.

- (a) Let $|h| = e^{-v_t(h)}$ for nonzero $h \in \mathbb{Q}(t)$ and let |0| = 0. Show that $|\cdot|$ is a valuation on $\mathbb{Q}(t)$ (i.e. is multiplicative and satisfies the triangle inequality).
- (b) Let \hat{K} denote the completion of $\mathbb{Q}(t)$ with respect to $|\cdot|$. Let U be the set of elements x of \hat{K} with |x| = 1. Show that U is not compact. Explain your answer carefully.