Math 430 Tom Tucker
NOTES FROM CLASS 11/08
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from now on. It is easy to see that X, is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 19.1. Let y € L. If h(y) € X;, then Ny o(y) < (t/n)".
Proof. Let b; = 0;(y) for 1 <i <r and let

bT—H = br+2 = \/y%—i_Z%a"wbn—l = bn =V yg+232
Then

N@y) = lov®)] - lon)lov1 (@) Plovs (@) - lona ()P = 1] -+ [bul.
By the arithmetic/geometric mean inequality
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Taking n-th powers finishes the proof. U

Lemma 19.2. (Arithmetic/geometric mean inequality) Let by, ..., b,
be positive numbers. Then

(1) > 2> /by by

i=1
(This also follows from Jensen’s inequality, which you can read about
on Wikipedia.)

Proof. Since the right and left-hand sides of scale, we can assume
that
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Thus, we need only show thautzi1
by---b, <1.
We can write b; = (1 + a;) with a; + - -+ a,, = 0. To show that
l+a)--(1+a,) <1
it will suffice to show that that the function
Ft)=(14ait) - (1 +ant)
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is decreasing on the interval [0, 1]. This can be checked by simply taking
the derivative of F'. We find that

F'(t) = Zai H(l + a;t).

i=1  j#i

If all of the a; are 0, this is clearly 0. Otherwise, we can write

F'(t) = lai JTQ +ait) =) fadd [J(1 + ait)

a;>0 JF#i a;<0 j#i
< . . — , i . ]
< (3 s T+ 0) - (Tl iy (TT0 400
a;>0 j#k ;<0 j#k
Since
D lail =2 lai
a; >0 a; <0
and
max <H(1 + aﬂ)) < min <H(1 + aﬁ))
J#k J#k
we must have F'(t) < 0 on the desired interval, so F' must be decreasing
on this interval. d
Proposition 19.3.
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Proof. The proof of this is in the book on p. 66. The last step in the

calculation is integration by parts, which the book neglects to mention.
O

Lemma 19.4. Let U be any bounded region of V and let L be a full
lattice in' V. Then LNU is finite.

Vol(X;) =

Proof. Let wy,...,w, be abasis for £ and let z1, ..., x, be the basis for
V' that gives the volume form. If M is the matrix given by Mx; = w;,
then for any integers m; we have

n n
1> mawill > 1M [l Y m
i=1 i=1

where || M ||in¢ is the minimum value of |M(y)| for y on the unit sphere
centered at the origin (which is nonzero). For any constant C' there are
finitely many integers m; such that
n
2 2 2
Z m; || M|l < C
i=1
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so there are finitely many elements of A in the sphere of radius C
centered at the origin. Any bounded region is contained in such a
sphere, so we are done. 0

Now, let I be a fractional ideal in £. The ideal I is torsion-free as
Z-module. We can calculate the volume of h([) in terms of the degree
of L, the discriminant |A(oz/Z)|, and | Nk (I)].

We’ll want to define the discriminant of fractional ideal [ first. We
haven’t yet defined the norm of a fractional ideal. Since a fractional
ideal I of a Dedekind domain factors as

qr - d
we can simply define the norm of I to be
Nzjo() = Nrjglar') -+ Nrjglag)-

Definition 19.5. Let I be an fractional ideal of 0;. Let o¢,...,0, be
the n distinct embeddings of L. — C and let wy, ..., w, generate [
over Z. We define the discriminant of A(I/Z) to be

A(I1/Z) = det]o;(w;)]%.

This definition does not depend on our choice of the basis, since two
different bases differ by a linear transformation with determinant +1.
(Note that this coincides with our earlier definition involving the trace
form, by work done on the midterm.)

Definition 19.6. Let p be a prime in Z. Let S = Z \ pZ. Let J be a
fractional ideal of S~'o;. We define

AT/ L)) = Zp) det[os (w;)?,
where wy, ..., w, is a basis for J over Z,)
Lemma 19.7. Let I be a fractional ideal of or,. Then
ZiyA(1)Z) = A(ST[Z)).

Proof. This follows immediately from the fact that any basis for I over
Z is a basis for S~ over Z,). O

Theorem 19.8. We have ZA(IJZ) = Ny x(I)*A(oL/Z).

Proof. Both the norm and the discriminant can be calculated locally,
so it suffices to prove that for p a prime of Z and S = Z \ pZ we have

A(S_lﬂL[/Z(p)) = NL/K(S_loLI)A(oL/Z(p)).

Since S~'oy is a principal ideal domain, we can write S™'1 = S~lo,y
for some y € L. Now, if wy,...,w, is a basis for S~'oy over Z,,
then yws, ..., yw, is basis for S™'I over Z,). The matrix [o;(yw;)| is
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equal to the matrix [0;(y)|o;(w;)] which is equal to [det o;(w,)] times
the matrix

Ul(y) 0 ... 0
0 oa(y) -+ 0
0 0 . Un(,y)

which has determinant equal to Ny ,q(y). Thus,

A(S™ oLl /Zy) = (Niyxe(y) det(oi(w))])” = Npjic(y)?A(S ™ 01/ Zy)).
O

Corollary 19.9. Let I C oy be an fractional ideal. Then h(I) is a
lattice with volume

(1/2)°[Npjo(D)|v]A(oL/Z)].

Proof. Since the volume of h([) is | det[h;(w;)]| this follows from taking
square roots in Theorem [19.8 and noting the connection between the
h; and the o;. O

Now we are ready for our main Theorem.

Theorem 19.10. Let I be a nonzero fractional ideal of Or. Then there
exists a # 0 such that

Nuelal < 2 (2) VAOZ] Nujal



