Math 430 Tom Tucker NOTES FROM CLASS 11/08

Let

$$X_t = \{x_1, \dots, x_r, y_1, z_1, \dots, y_s, z_s \mid \sum_{i=1}^r |x_i| + \sum_{j=1}^s 2\sqrt{y_j^2 + z_j^2} \le t\}$$

from now on. It is easy to see that X_t is convex, bounded, and centrally symmetric, so we will be able to apply Minkowski's theorem to it.

Proposition 19.1. Let $y \in L$. If $h(y) \in X_t$, then $N_{L/\mathbb{Q}}(y) \leq (t/n)^n$.

Proof. Let $b_i = \sigma_i(y)$ for $1 \le i \le r$ and let

$$b_{r+1} = b_{r+2} = \sqrt{y_1^2 + z_1^2, \dots, b_{n-1}} = b_n = \sqrt{y_s^2 + z_s^2}.$$

Then

 $N(y) = |\sigma_1(y)| \cdots |\sigma_n(y)| |\sigma_{r+1}(y)|^2 |\sigma_{r+3}(y)|^2 \cdots |\sigma_{n-1}(y)|^2 = |b_1| \cdots |b_n|.$ By the arithmetic/geometric mean inequality

$$t/n \ge \sum_{i=1}^n \frac{|b_i|}{n} \ge \sqrt[n]{|b_1| \cdots |b_n|}.$$

Taking n-th powers finishes the proof.

Lemma 19.2. (Arithmetic/geometric mean inequality) Let b_1, \ldots, b_n be positive numbers. Then

(1)
$$\sum_{i=1}^{m} \frac{b_i}{n} \ge \sqrt[n]{b_1 \cdots b_n}$$

(This also follows from Jensen's inequality, which you can read about on Wikipedia.)

Proof. Since the right and left-hand sides of (1) scale, we can assume that

$$\sum_{i=1}^{m} \frac{b_i}{n} = 1.$$

Thus, we need only show that

 $b_1 \cdots b_n \leq 1.$

We can write $b_i = (1 + a_i)$ with $a_1 + \cdots + a_n = 0$. To show that

 $(1+a_1)\cdots(1+a_n) \le 1$

it will suffice to show that that the function

$$F(t) = (1 + a_1 t) \cdots (1 + a_n t)$$

is decreasing on the interval [0, 1]. This can be checked by simply taking the derivative of F. We find that

$$F'(t) = \sum_{i=1}^{n} a_i \prod_{j \neq i} (1 + a_i t).$$

If all of the a_i are 0, this is clearly 0. Otherwise, we can write

$$\begin{aligned} F'(t) &= \sum_{a_i > 0} |a_i| \prod_{j \neq i} (1 + a_i t) - \sum_{a_i < 0} |a_i| \prod_{j \neq i} (1 + a_i t) \\ &\leq (\sum_{a_i > 0} |a_i|) \max_{a_k > 0} \left(\prod_{j \neq k} (1 + a_j t) \right) - (\sum_{a_i < 0} |a_i|) \min_{a_k < 0} \left(\prod_{j \neq k} (1 + a_j t) \right) \end{aligned}$$

Since

$$\sum_{a_i > 0} |a_i| = \sum_{a_i < 0} |a_i|$$

and

$$\max_{a_k>0} \left(\prod_{j \neq k} (1+a_j t) \right) < \min_{a_k<0} \left(\prod_{j \neq k} (1+a_j t) \right)$$

we must have F'(t) < 0 on the desired interval, so F must be decreasing on this interval.

Proposition 19.3.

$$\operatorname{Vol}(X_t) = \frac{2^{r-s}\pi^s t^n}{n!}.$$

Proof. The proof of this is in the book on p. 66. The last step in the calculation is integration by parts, which the book neglects to mention. \Box

Lemma 19.4. Let U be any bounded region of V and let \mathcal{L} be a full lattice in V. Then $\mathcal{L} \cap U$ is finite.

Proof. Let w_1, \ldots, w_n be a basis for \mathcal{L} and let x_1, \ldots, x_n be the basis for V that gives the volume form. If M is the matrix given by $Mx_i = w_i$, then for any integers m_i we have

$$\|\sum_{i=1}^{n} m_{i} w_{i}\| \ge \|M\|_{\inf} \sum_{i=1}^{n} m_{i}^{2}$$

where $||M||_{inf}$ is the minimum value of |M(y)| for y on the unit sphere centered at the origin (which is nonzero). For any constant C there are finitely many integers m_i such that

$$\sum_{i=1}^{n} m_i^2 \|M\|_{\inf}^2 \le C^2$$

so there are finitely many elements of λ in the sphere of radius C centered at the origin. Any bounded region is contained in such a sphere, so we are done.

Now, let I be a fractional ideal in \mathcal{L} . The ideal I is torsion-free as \mathbb{Z} -module. We can calculate the volume of h(I) in terms of the degree of L, the discriminant $|\Delta(\mathfrak{o}_L/\mathbb{Z})|$, and $|\mathcal{N}_{L/K}(I)|$.

We'll want to define the discriminant of fractional ideal I first. We haven't yet defined the norm of a fractional ideal. Since a fractional ideal I of a Dedekind domain factors as

$$\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}$$

we can simply define the norm of I to be

$$N_{L/\mathbb{Q}}(I) = N_{L/\mathbb{Q}}(\mathfrak{q}_1^{e_1}) \cdots N_{L/\mathbb{Q}}(\mathfrak{q}_m^{e_m}).$$

Definition 19.5. Let I be an fractional ideal of \mathfrak{o}_L . Let $\sigma_1, \ldots, \sigma_n$ be the n distinct embeddings of $L \longrightarrow \mathbb{C}$ and let w_1, \ldots, w_n generate I over \mathbb{Z} . We define the discriminant of $\Delta(I/\mathbb{Z})$ to be

$$\Delta(I/\mathbb{Z}) := \det[\sigma_i(w_j)]^2.$$

This definition does not depend on our choice of the basis, since two different bases differ by a linear transformation with determinant ± 1 . (Note that this coincides with our earlier definition involving the trace form, by work done on the midterm.)

Definition 19.6. Let p be a prime in \mathbb{Z} . Let $S = \mathbb{Z} \setminus p\mathbb{Z}$. Let J be a fractional ideal of $S^{-1}\mathfrak{o}_L$. We define

$$\Delta(J/\mathbb{Z}_{(p)}) = Z_{(p)} \det[\sigma_i(w_j)]^2,$$

where w_1, \ldots, w_n is a basis for J over $\mathbb{Z}_{(p)}$

Lemma 19.7. Let I be a fractional ideal of o_L . Then

$$\mathbb{Z}_{(p)}\Delta(I/\mathbb{Z}) = \Delta(S^{-1}I/\mathbb{Z}_{(p)}).$$

Proof. This follows immediately from the fact that any basis for I over \mathbb{Z} is a basis for $S^{-1}I$ over $\mathbb{Z}_{(p)}$.

Theorem 19.8. We have $\mathbb{Z}\Delta(I/\mathbb{Z}) = N_{L/K}(I)^2 \Delta(\mathfrak{o}_L/\mathbb{Z}).$

Proof. Both the norm and the discriminant can be calculated locally, so it suffices to prove that for p a prime of \mathbb{Z} and $S = \mathbb{Z} \setminus p\mathbb{Z}$ we have

$$\Delta(S^{-1}\mathfrak{o}_L I/\mathbb{Z}_{(p)}) = \mathcal{N}_{L/K}(S^{-1}\mathfrak{o}_L I)\Delta(\mathfrak{o}_L/\mathbb{Z}_{(p)}).$$

Since $S^{-1}\mathfrak{o}_L$ is a principal ideal domain, we can write $S^{-1}I = S^{-1}\mathfrak{o}_L y$ for some $y \in L$. Now, if w_1, \ldots, w_n is a basis for $S^{-1}\mathfrak{o}_L$ over $\mathbb{Z}_{(p)}$, then yw_1, \ldots, yw_n is basis for $S^{-1}I$ over $\mathbb{Z}_{(p)}$. The matrix $[\sigma_i(yw_j)]$ is equal to the matrix $[\sigma_i(y)|\sigma_i(w_j)]$ which is equal to $[\det \sigma_i(w_j)]$ times the matrix

$$\begin{pmatrix}
\sigma_1(y) & 0 & \cdots & 0 \\
0 & \sigma_2(y) & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \sigma_n(y)
\end{pmatrix}$$

which has determinant equal to $N_{L/\mathbb{Q}}(y)$. Thus,

$$\Delta(S^{-1}\mathfrak{o}_L I/\mathbb{Z}_{(p)}) = \left(\mathbb{N}_{L/K}(y)\det[\sigma_i(w_j)]\right)^2 = \mathbb{N}_{L/K}(y)^2 \Delta(S^{-1}\mathfrak{o}_L/\mathbb{Z}_{(p)}).$$

Corollary 19.9. Let $I \subset \mathfrak{o}_L$ be an fractional ideal. Then h(I) is a lattice with volume

$$(1/2)^{s} |\operatorname{N}_{L/\mathbb{Q}}(I)| \sqrt{|\Delta(\mathfrak{o}_{L}/\mathbb{Z})|}$$

Proof. Since the volume of h(I) is $|\det[h_i(w_j)]|$ this follows from taking square roots in Theorem 19.8 and noting the connection between the h_i and the σ_i .

Now we are ready for our main Theorem.

Theorem 19.10. Let I be a nonzero fractional ideal of \mathcal{O}_L . Then there exists $a \neq 0$ such that

$$|\operatorname{N}_{L/\mathbb{Q}}(a)| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}_{L/\mathbb{Q}}(I).$$