
Math 430 Tom Tucker
NOTES FROM CLASS 11/08

Let

Xt = {x1, . . . , xr, y1, z1, . . . , ys, zs |
r∑

i=1

|xi|+
s∑

j=1

2
√
y2j + z2j ≤ t}

from now on. It is easy to see that Xt is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 19.1. Let y ∈ L. If h(y) ∈ Xt, then NL/Q(y) ≤ (t/n)n.

Proof. Let bi = σi(y) for 1 ≤ i ≤ r and let

br+1 = br+2 =
√
y21 + z21 , . . . , bn−1 = bn =

√
y2s + z2s .

Then

N(y) = |σ1(y)| · · · |σn(y)||σr+1(y)|2|σr+3(y)|2 · · · |σn−1(y)|2 = |b1| · · · |bn|.
By the arithmetic/geometric mean inequality

t/n ≥
n∑

i=1

|bi|
n
≥ n
√
|b1| · · · |bn|.

Taking n-th powers finishes the proof. �

Lemma 19.2. (Arithmetic/geometric mean inequality) Let b1, . . . , bn
be positive numbers. Then

(1)
m∑
i=1

bi
n
≥ n
√
b1 · · · bn.

(This also follows from Jensen’s inequality, which you can read about
on Wikipedia.)

Proof. Since the right and left-hand sides of (1) scale, we can assume
that

m∑
i=1

bi
n

= 1.

Thus, we need only show that

b1 · · · bn ≤ 1.

We can write bi = (1 + ai) with a1 + · · ·+ an = 0. To show that

(1 + a1) · · · (1 + an) ≤ 1

it will suffice to show that that the function

F (t) = (1 + a1t) · · · (1 + ant)
1



2

is decreasing on the interval [0, 1]. This can be checked by simply taking
the derivative of F . We find that

F ′(t) =
n∑

i=1

ai
∏
j 6=i

(1 + ait).

If all of the ai are 0, this is clearly 0. Otherwise, we can write

F ′(t) =
∑
ai>0

|ai|
∏
j 6=i

(1 + ait)−
∑
ai<0

|ai|
∏
j 6=i

(1 + ait)

≤ (
∑
ai>0

|ai|) max
ak>0

(∏
j 6=k

(1 + ajt)

)
− (
∑
ai<0

|ai|) min
ak<0

(∏
j 6=k

(1 + ajt)

)
.

Since ∑
ai>0

|ai| =
∑
ai<0

|ai|

and

max
ak>0

(∏
j 6=k

(1 + ajt)

)
< min

ak<0

(∏
j 6=k

(1 + ajt)

)
we must have F ′(t) < 0 on the desired interval, so F must be decreasing
on this interval. �

Proposition 19.3.

Vol(Xt) =
2r−sπstn

n!
.

Proof. The proof of this is in the book on p. 66. The last step in the
calculation is integration by parts, which the book neglects to mention.

�

Lemma 19.4. Let U be any bounded region of V and let L be a full
lattice in V . Then L ∩ U is finite.

Proof. Let w1, . . . , wn be a basis for L and let x1, . . . , xn be the basis for
V that gives the volume form. If M is the matrix given by Mxi = wi,
then for any integers mi we have

‖
n∑

i=1

miwi‖ ≥ ‖M‖inf
n∑

i=1

m2
i

where ‖M‖inf is the minimum value of |M(y)| for y on the unit sphere
centered at the origin (which is nonzero). For any constant C there are
finitely many integers mi such that

n∑
i=1

m2
i ‖M‖2inf ≤ C2
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so there are finitely many elements of λ in the sphere of radius C
centered at the origin. Any bounded region is contained in such a
sphere, so we are done. �

Now, let I be a fractional ideal in L. The ideal I is torsion-free as
Z-module. We can calculate the volume of h(I) in terms of the degree
of L, the discriminant |∆(oL/Z)|, and |NL/K(I)|.

We’ll want to define the discriminant of fractional ideal I first. We
haven’t yet defined the norm of a fractional ideal. Since a fractional
ideal I of a Dedekind domain factors as

qe11 · · · qemm
we can simply define the norm of I to be

NL/Q(I) = NL/Q(qe11 ) · · ·NL/Q(qemm ).

Definition 19.5. Let I be an fractional ideal of oL. Let σ1, . . . , σn be
the n distinct embeddings of L −→ C and let w1, . . . , wn generate I
over Z. We define the discriminant of ∆(I/Z) to be

∆(I/Z) := det[σi(wj)]
2.

This definition does not depend on our choice of the basis, since two
different bases differ by a linear transformation with determinant ±1.
(Note that this coincides with our earlier definition involving the trace
form, by work done on the midterm.)

Definition 19.6. Let p be a prime in Z. Let S = Z \ pZ. Let J be a
fractional ideal of S−1oL. We define

∆(J/Z(p)) = Z(p) det[σi(wj)]
2,

where w1, . . . , wn is a basis for J over Z(p)

Lemma 19.7. Let I be a fractional ideal of oL. Then

Z(p)∆(I/Z) = ∆(S−1I/Z(p)).

Proof. This follows immediately from the fact that any basis for I over
Z is a basis for S−1I over Z(p). �

Theorem 19.8. We have Z∆(I/Z) = NL/K(I)2∆(oL/Z).

Proof. Both the norm and the discriminant can be calculated locally,
so it suffices to prove that for p a prime of Z and S = Z \ pZ we have

∆(S−1oLI/Z(p)) = NL/K(S−1oLI)∆(oL/Z(p)).

Since S−1oL is a principal ideal domain, we can write S−1I = S−1oLy
for some y ∈ L. Now, if w1, . . . , wn is a basis for S−1oL over Z(p),
then yw1, . . . , ywn is basis for S−1I over Z(p). The matrix [σi(ywj)] is
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equal to the matrix [σi(y)|σi(wj)] which is equal to [detσi(wj)] times
the matrix 

σ1(y) 0 · · · 0
0 σ2(y) · · · 0
· · · · · · · · · · · ·
0 0 · · · σn(y)


which has determinant equal to NL/Q(y). Thus,

∆(S−1oLI/Z(p)) =
(
NL/K(y) det[σi(wj)]

)2
= NL/K(y)2∆(S−1oL/Z(p)).

�

Corollary 19.9. Let I ⊂ oL be an fractional ideal. Then h(I) is a
lattice with volume

(1/2)s|NL/Q(I)|
√
|∆(oL/Z)|.

Proof. Since the volume of h(I) is | det[hi(wj)]| this follows from taking
square roots in Theorem 19.8 and noting the connection between the
hi and the σi. �

Now we are ready for our main Theorem.

Theorem 19.10. Let I be a nonzero fractional ideal of OL. Then there
exists a 6= 0 such that

|NL/Q(a)| ≤ n!

nn

(
4

π

)s√
∆(OL/Z) NL/Q(I).


