
Math 430 Tom Tucker
NOTES FROM CLASS 11/11

Recall a quick preview of what we are going to do.
We want to show that there is an element of small norm in I. To

make the proof of the finiteness of the class number as clear as possible,
we’ll first give simple versions of it and then prove more quantitative
versions later.

Theorem 19.1. (Imprecise small element of fractional ideal) There
exists a constant C(L) depending only on L such that for any fractional
ideal I of OL there is an element y ∈ I

NL/K(y) ≤ C(L) NL/K(I).

Theorem 19.2. Assume Theorem 19.1 above. For any fractional ideal
I of OL, there is an ideal J ⊂ OL in the same ideal class as I such
that

|NL/Q(J)| ≤ C(L).

Proof. By Theorem 19.1 above, there exists a ∈ I−1 such that

|NL/Q(a)| ≤ |NL/Q(I−1)|C(L).

Then J = Ia ⊆ OL and

|NL/Q(J)| ≤ C(L).
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We’ll need Minkowski’s theorem, which guarantees the existence of
certain elements of a lattice.

Lemma 19.3. Let L be a lattice in V (Rn with a volume form) and
let U be a measurable subset of V such that the translates U +λ, where
λ ∈ L are disjoint. Then Vol(U) ≤ Vol(L).

Proof. Let T be a fundamental parallelepiped for some basis of L. For
each λ ∈ L, let

Uλ = T ∩ (U − λ).

We then have

U =
⋃
λ∈L

(Uλ + λ).

Since the volume form is translate invariant, we see that∑
λ∈L

Vol(Uλ) =
∑
λ∈L

Vol(Uλ + λ) = Vol(U).
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Since all the Uλ are disjoint and contained in T , we see that

Vol(L) = Vol(T ) ≥ Vol(
⋃
λ∈L

(Uλ)) =
∑
λ∈L

Vol(Uλ) = Vol(U).
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Theorem 19.4. (Minkowsi) Let L be a full lattice in the volumed vec-
tor space V of dimension n and let U be a bounded, centrally symmetric,
convex subset of V . If Vol(U) > 2n Vol(L), then U contains a nonzero
element λ ∈ L

Proof. By the way, centrally symmetric means that for x ∈ U , we have
−x ∈ U . Convex means that for x, y ∈ U and t ∈ [0, 1], we have
tx+ (1− t)y ∈ U .

Now, let W = 1
2
U . Then Vol(W ) = 1

2n
Vol(U), so Vol(W ) > Vol(L),

so it follows from the Lemma, we just proved that not all of the trans-
lates W+λ are disjoint. Taking y ∈ (W+λ)∩(W+λ′), with λ 6= λ′, we
can write y = a+ λ = b+ λ′, which gives us a, b ∈ W with (a− b) ∈ L
and (a− b) 6= 0. Since a, b ∈ W = 1

2
U , we can write a = 1

2
x and b = 1

2
y

for x, y ∈ U . Since y is convex and centrally symmetric the element
a− b = 1

2
x− 1

2
y = 1

2
x+ 1

2
(−y) ∈ U and we are done. �

We will want to apply this to a lattice h(I) for I a fractional ideal of
OL. The region U that we use should consist of elements of bounded
norm. Recall though, that the most natural sort of region is something
like a sphere

√
x21 + · · ·+ x2n ≤M and we are going to be interested in

something like the product x1 · · ·xn, so we will need something relating
these two. Also, we have messed around a bit at the complex places, to
we’ll have to tinker with that a bit. Let’s label our coordinate system
for V in the following way. We call the first r-coordinates corresponding
to the real embeddings x1, . . . , xr. The remaining 2s coordinates we
label as y1, z1, . . . , ys, zs.

Let

Xt = {x1, . . . , xr, y1, z1, . . . , ys, zs |
r∑
i=1

|xi|+
s∑
j=1

2
√
y2j + z2j ≤ t}

from now on. It is easy to see that Xt is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.


