Math 430 Tom Tucker
NOTES FROM CLASS 11/04

First, a little bit about the idea of our proof. We will prove the
following. All of our norms here will be relative to Q (i.e. over K they
are Ng/qg.

Theorem 18.1. Let K be a number field. Then there is a constant
C(K) such that for any nonzero fractional ideal I in ok, there is an
element a € I such that |N(a)| < |N(I)|C(K).

This means that a “almost generates” I. In particular it give the
following (which easily shows that the class group of K is finite).

Corollary 18.2. Let K be a number field. Then there is a constant
C(K) such that for any nonzero ideal fractional I in ok, there is an
integral idea J C ox such that J = Ia for some a € K and |N(J)| <
C(K).

Proof. Apply the previous theorem to /=!. Then there is an a € I~}
such that |N(a)| < |N(I7YC(K). Let J = Ia. O

Recall from last time... From now on, we’ll stick to L a finite field
extension of Q of degree n with ring of integers oy. Some of what we
do applies to other orders in L, too.

Let’s order the embeddings o4, ...,0, (n = [L : Q]) in the following
way. We let 01,...,0, be real embeddings. The remaining embeddings
come in pairs as explained above, so for i =r+ 1,7+ 3,..., we let o;
be a complex embedding and let ;.1 = 7;. We let s be the number of
complex embeddings. We have r 4+ 2s = n.

Now, we can embed oy into R™ by letting

h<y> - (01<y)7 e 7ar<y>7

§):E(OrJrl (y))> %(UrJrl (y))> LR §R<O—r+2(571)(y))7 S<O_r+2(371)(y)))

= (01(9)7 s 7UT(y)7

0ri1(y) + 0rp2(y) 0ry1(y) — ori2(y)
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0r+2(371)(y> + UT+2(871)(y) UT+2(871)(y) - 0r+2(871)+1(y))
2 ’ 21 ‘

Let us also denote as h; the map h : 0o, — R given by composing h
with projection p; onto the i-th coordinate of R™.

We will continue to use h and h; as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree
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Proposition 18.3. Let B be an integral extension of Z with field of
fractions L. Let wy,...,w, be a basis for a B over Z. Then

1

——A(B/7Z).

Proof. From the HW just assigned (problem #2), we know that
(detloy(w;)))* = A(B/Z).

We also know from ([1]) that h; differs from o; (when the o’s are ordered
as in that equation) only for o; complex and we can obtain h; for even
1 > r by adding up two o; and dividing by 2. We can then get the odd
1-th rows by subtracting the ¢+ — 1 row from the ¢-th row and diving by
2¢. 1 will put this on the board. (l

(det[hi(w;)])* =

Recall our definitions of lattices.

Definition 18.4. A subgroup £ of R" is said to be a lattice if £ is
isomorphic to Z" as a group and the R-vector space generated by L
has dimension r. When this holds for £ with r = n, we say that L is
a full lattice in R™.

Corollary 18.5. The image h(or) in R™ is a full lattice.
Proof. Since A(or/Z) # 0, the determinant det[h;(w;)] # 0, so the

h;(w;) are linearly independent over R. Hence they generate R as an
R-vector space and oy, is a full lattice. U

In the book the following characterization of a lattice is proven. We
will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup L C R" is a lattice
if and only if every sphere in R™ contains only finitely many elements

of L.

We will not need this characterization.
Fioielk Fundamental parallelepipeds. Let £ be a full lattice in R™
and let wy, ..., w, be a basis for £ over Z. We call the set

TI{T1w1+--~+rnwn | OSTZ < 1, Tl'ER}
the fundamental parallelepiped for the basis wy, ..., w,.

Lemma 18.7. Let L be a full lattice in R™ and let wy, . .., w, be a basis
for L over Z with fundamental parallelepipeds T. Then every element
v € R" can be written as t + X for a unique t € T and A € L. In
particular, the sets X\ + T are disjoint and cover all of R™.
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Proof. Let v € V. Write v = ) s;w; (uniquely). Then each s; can be
i=1
written uniquely as an integer plus a real number less than 1, that is
as
S; = [31] + r;
where the brackets are the greatest integer function and r; < 1. 0

Now, we want to work with volumes. A volume on R" comes from a
choice of orthonormal basis z1,...,x,. Let V be the vector space R"
equipped with the orthonormal basis z1,...,x,. For a lattice £ with
basis wy,...,w,, we can write

n
W; = E Sijﬂfj.
j=1

It follows from multivariable calculus that the volume of the paral-
lelepipeds T for the w; is

T 0<z;<1

We call the quantity |det[s;;]| the volume of £. It does not depend on
our choice of basis since any two choice of bases differ by a change of
basis matrix with determinant +1.

Note that there is a choice of basis implicit in our map h : o, — R™.
This basis comes from the coordinates with which we have described
our map. Draw picture on board. We will call this basis x; and call R™
equipped with this volume form V.

Theorem 18.8. The volume of h(or) in'V is

1
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Proof. This follows immediately from Proposition [18.3] since the ma-
trix we have written is with respect to the basis x; above. O



