
Math 430 Tom Tucker
NOTES FROM CLASS 11/04

First, a little bit about the idea of our proof. We will prove the
following. All of our norms here will be relative to Q (i.e. over K they
are NK/Q.

Theorem 18.1. Let K be a number field. Then there is a constant
C(K) such that for any nonzero fractional ideal I in oK, there is an
element a ∈ I such that |N(a)| ≤ |N(I)|C(K).

This means that a “almost generates” I. In particular it give the
following (which easily shows that the class group of K is finite).

Corollary 18.2. Let K be a number field. Then there is a constant
C(K) such that for any nonzero ideal fractional I in oK, there is an
integral idea J ⊆ oK such that J = Ia for some a ∈ K and |N(J)| ≤
C(K).

Proof. Apply the previous theorem to I−1. Then there is an a ∈ I−1
such that |N(a)| ≤ |N(I−1|C(K). Let J = Ia. �

Recall from last time... From now on, we’ll stick to L a finite field
extension of Q of degree n with ring of integers oL. Some of what we
do applies to other orders in L, too.

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σs be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi. We let s be the number of
complex embeddings. We have r + 2s = n.

Now, we can embed oL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : oL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].
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Proposition 18.3. Let B be an integral extension of Z with field of
fractions L. Let w1, . . . , wn be a basis for a B over Z. Then

(det[hi(wj)])
2 =

1

(2i)2s
∆(B/Z).

Proof. From the HW just assigned (problem #2), we know that

(det[σi(wj)])
2 = ∆(B/Z).

We also know from (1) that hi differs from σi (when the σ’s are ordered
as in that equation) only for σi complex and we can obtain hi for even
i > r by adding up two σi and dividing by 2. We can then get the odd
i-th rows by subtracting the i− 1 row from the i-th row and diving by
2i. I will put this on the board. �

Recall our definitions of lattices.

Definition 18.4. A subgroup L of Rn is said to be a lattice if L is
isomorphic to Zr as a group and the R-vector space generated by L
has dimension r. When this holds for L with r = n, we say that L is
a full lattice in Rn.

Corollary 18.5. The image h(oL) in Rn is a full lattice.

Proof. Since ∆(oL/Z) 6= 0, the determinant det[hi(wj)] 6= 0, so the
hi(wj) are linearly independent over R. Hence they generate Rn as an
R-vector space and oL is a full lattice. �

In the book the following characterization of a lattice is proven. We
will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup L ⊂ Rn is a lattice
if and only if every sphere in Rn contains only finitely many elements
of L.

We will not need this characterization.
****** Fundamental parallelepipeds. Let L be a full lattice in Rn

and let w1, . . . , wn be a basis for L over Z. We call the set

T = {r1w1 + · · ·+ rnwn | 0 ≤ ri < 1, ri ∈ R}

the fundamental parallelepiped for the basis w1, . . . , wn.

Lemma 18.7. Let L be a full lattice in Rn and let w1, . . . , wn be a basis
for L over Z with fundamental parallelepipeds T . Then every element
v ∈ Rn can be written as t + λ for a unique t ∈ T and λ ∈ L. In
particular, the sets λ+ T are disjoint and cover all of Rn.
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Proof. Let v ∈ V . Write v =
m∑
i=1

siwi (uniquely). Then each si can be

written uniquely as an integer plus a real number less than 1, that is
as

si = [si] + ri
where the brackets are the greatest integer function and ri < 1. �

Now, we want to work with volumes. A volume on Rn comes from a
choice of orthonormal basis x1, . . . , xn. Let V be the vector space Rn

equipped with the orthonormal basis x1, . . . , xn. For a lattice L with
basis w1, . . . , wn, we can write

wi =
n∑

j=1

sijxj.

It follows from multivariable calculus that the volume of the paral-
lelepipeds T for the wi is∫
· · ·
∫
T
dx1 . . . dxn =

∫
· · ·
∫
0≤xi<1

| det[sij]|dx1 . . . dxn = | det[sij]|.

We call the quantity | det[sij]| the volume of L. It does not depend on
our choice of basis since any two choice of bases differ by a change of
basis matrix with determinant ±1.

Note that there is a choice of basis implicit in our map h : oL −→ Rn.
This basis comes from the coordinates with which we have described
our map. Draw picture on board. We will call this basis xi and call Rn

equipped with this volume form V .

Theorem 18.8. The volume of h(oL) in V is

1

2s

√
|∆(oL/Z)|.

Proof. This follows immediately from Proposition 18.3, since the ma-
trix we have written is with respect to the basis xi above. �


