
Math 430 Tom Tucker
Notes From Class 11/01

Let us denote (−1)(q−1)/2 as ε(q).

Proposition 17.1. Suppose that p is odd. There are an even number
of distinct primes Q of Z[ξq] lying over p if and only if pZ[

√
ε(q)q]

factors as two distinct primes. (This is much easier to follow with a
picture which I give in class.)

Proof. Let m be a prime in Z[ξq] such that m ∩ Z = pZ. Let G denote

the Galois group Gal(Q(ξq)/Q), let E denote Q(
√
ε(q)q), let GE denote

the part of G that acts identically on E, and let D be the part of G
that sends m to itself. Recall that G acts transitively on the set of
primes of Z[ξq] lying over p. Thus, the number of primes lying over p
is equal to [G : D]. The index [G : D] is even if and only if D ⊆ GE,
since GE is the unique subgroup of index 2 in G.

Now, let’s let q be a prime of Z[
√
ε(q)q] for which q ∩ Z = pZ. The

group GE acts transitively on the set of primes of Z[ξq] lying over q. If
this set is the same as the set of all primes in Z[ξq] lying over P , then

q must be the only prime in Z[
√
ε(q)q] lying over p. Otherwise, there

must be two primes in Z[
√
ε(q)q] lying over p.

We claim that GE acts transitively on the set of all m lying over p if
and only if D is not contained in GE. Note that if D is not contained
in GE, then the [GE : D∩GE] = [G : D], which means that the number
of primes in the G-orbit of m is the same as the number of primes in
GE-orbit of m, which means that GE acts transitively on the m lying
over p. If D ⊆ GE, then [G : D] = 2[GE : D] and GE does not act
transitively on this set. �

Corollary 17.2. Suppose that p is odd. Then
(
ε(q)q
p

)
= 1 if and only

if p splits into an even number of primes in Z[ξq].

Proof.
(
ε(q)q
p

)
= 1 if and only if x2−ε(q)q factors over p, which happens

if and only if pZ[
√
ε(q)q] factors as two distinct primes, since Z[

√
ε(q)q]

localized at an odd prime of Z is integrally closed. �

Let Tp denote the number of primes lying over p in Z[ξq]. From what

we’ve just seen, (−1)TP =
(
ε(q)q
p

)
.

The next two proposition and corollary work for any p (including 2).

Proposition 17.3. The degree of the field extension Fp[ξq] is equal to
ordq(p) (the order of p in Fq).
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Proof. This is on the midterm. Hint: Fpn contains a primitive q-th
root of unity if and only if q|pn − 1. �

Corollary 17.4. Suppose that there are Tp primes in Z[ξq] lying above
p. Then ordq(p) is equal to (q − 1)/Tp.

Proof. Follows immediately from the previous proposition using the
fact that Tpfp = q − 1 (where fp is the degree of the residue field of
primes lying over p). �

Theorem 17.5. (Quadratic reciprocity for odd primes) Let p and q be
odd primes, p 6= q. Then(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Proof. Let ordq(p) denote the order of p (mod q). We see that(
ε(q)q

p

)
= (−1)Tp (Corollary 17.2)

= (−1)
q−1

ordq(p) (Corollary 17.4)

=

(
p

q

)
(Property (iv)).

Thus,(
p

q

)
=

(
ε(q)q

p

)
=

(
−1(q−1)/2

p

)(
q

p

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

Multiplying
(
p
q

)
by
(
q
p

)
then finishes the proof. �

******************** Now, let’s move on to the class group. Recall
that for any integral domain R, we have notion of invertible ideals
(recall that it is a fractional ideal with an inverse) and that we have
an exact sequence

0 −→ Pri(R) −→ Inv(R) −→ Pic(R) −→ 0.

where Pri(R) is the set of principal ideals ofR, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, we call Pic(R) the class group of R and denote it
as Cl(R). When R is the integral closure OL of Z in some number field
L, we often write Cl(L) for Cl(OL). We also write ∆(L) for ∆(OL/Z).
We want to prove the following.

Theorem 17.6. Let L be a number field. Then Cl(L) is finite.
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We’ve already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[

√
19]) 6= 1 (this ring isn’t Dedekind, but later we’ll see Dedekind

rings with nontrivial class groups.
How did we show that Cl(Z[i]) = 1? We took advantage of the fact

that Z[i] forms a sublattice of C. We’ll try to do that in general.
Here is the idea... If we have a number field L of degree n over

Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L −→ C and then conjugating this
embedding by elements in the cosets of HL in Gal(M/Q) for M some
Galois extension of Q containing L. We’ll use these to make B a full
lattice in Rn. What is a full lattice?

Definition 17.7. A lattice L ⊂ Rn is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice L ⊂ Rn is a free Z-module of rank n that generates
Rn as a R-vector space.

Example 17.8. (1) Z[θ] where θ2 = 3 is not a full lattice of R2

under the embedding 1 7→ 1 and θ 7→
√

3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R2 where R2 is C considered as an R-vector
space with basis 1, i over R.

On the other hand, we can send Z[θ] where θ2 = 3 into R2 in such
a way that it is a full lattice in the following way. Let φ : 1 7→ (1, 1)
and φ : θ :−→ (

√
3,−
√

3). In this case, we must generate R2 as an R2

vector space since (1, 1) and (
√

3,−
√

3) are linearly independent.
There are two different types of embeddings of L into C. There are

the real ones and the complex ones. An embedding σ : L −→ C is real if
σ(y) = σ(y) for every y ∈ L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L ∼= Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) ∼=

⊕m
i=1R[X]/fi(X) where

the fi have coefficients in R, are irreducible over R, and f1 . . . fm = g
(note that the fi are distinct since L is separable over Q). We also know
that each fi is of degree 1 or 2. When fi has degree 1, then R[X]/fi(X)
is isomorphic to R and when fi has degree 2, then R[X]/fi(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j : L ∼= Q[X]/f(X) −→
m⊕
i=1

R[X]/fi(X).
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Composing j with projection onto the i-th factor of
m⊕
i=1

R[X]/fi(X)

then gives a map from L −→ R or L −→ C. In fact, when deg fi =
2 and R[X]/fi(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σr be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi+1. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed OL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : OL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].


