
Math 430 Tom Tucker
Notes From Class 10/30

Theorem 17.1. Let m be any positive integer. Then Z[ξm] is Dedekind
and the field Q(ξm) is Galois of degree of φ(m) over Q. Thus, Φm(X)
is irreducible over Q for all m.

Proof. It is obvious that Q(ξm) is Galois. Indeed, ξmm = 1 implies
σ(ξm)m = 1 for any conjugate σ(ξm) of ξm. But every root of xm−1 = 0
is a power of ξm so is in Q(ξm). Hence, Q(ξm) is the splitting field for
the minimal monic of ξm and is therefore Galois.

We will show that Z[ξm] is Dedekind and that Q(ξm) has degreeφ(m)
over Q by induction on the number r of distinct prime factors p of m.
We have already treated the case r = 1. Then writing m = m′q where
m′ has r−1 distinct prime factors and q is a prime power (which is prime
to m′). The discriminant of Z[ξ′m] divides (m′)m

′
(the discriminant of

xm
′ − 1) so is prime to the discriminant of Z[ξq] (since (m′, q) = 1). By

this week’s homework #5, it follows that Z[ξq, ξm′ ] is Dedekind, since
Z[ξm′ ] and Z[ξq] are Dedekind by the inductive hypothesis and have
coprime discriminants. Since ξqm is a primitive m′-th root of unity and
ξm
′

m is a primitive q-th root of unity, we have

Z[ξm] = Z[ξq, ξm′ ],

so Z[ξm] is Dedekind.
To calculate the degree of Q(ξm) it will suffice to show that Q(ξq) and

Q(ξm′) are disjoint over Q, since that means that the degree of Q(ξm) is
the product of the degrees of Q(ξq) and Q(ξm′), and φ(m) = φ(q)φ(m′)
since m′ and q are relatively prime. Now p ramifies completely in Q(ξq),
and not at all in Q(ξm) so Q(ξq)∩Q(ξm′) = Q, as desired, by a previous
homework problem.

To see that Φm(X) is irreducible over Q for all m we simply note
that deg Φm(X) = φ(m) = [Q(ξm) : Q]. �

We can use cyclotomic fields to prove the quadratic reciprocity the-
orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as(

a

p

)
=

{
1 : a is square (mod p)
−1 : a is not a square (mod p)

From now on, p and q are distinct odd primes (there is also a form
of quadratic reciprocity when one of them is 2, but we will not treat

it). Quadratic reciprocity relates
(

p
q

)
with

(
q
p

)
. It says that for p and

1



2

q odd we have (
p

q

)(
q

p

)
= (−1)

(q−1)(p−1)
4 .

When p is odd and (a, p) = 1, we have

(1)
(

a
p

)
= a(p−1)/2;

(2)
(

ab
p

)
=
(

a
p

)(
b
p

)
;

(3)
(
−1
p

)
= (−1)(p−1)/2;

(4)
(

a
p

)
= (−1)

p−1
ord(a) , where ordp(a) denotes the order of a (mod p).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)∗ has a primitive root θ and a is square mod
p if and only if a = θr for some even r. Now, (θr)(p−1)/2 = 1 if r is even
and −1 is r is odd, so we are done.

We will give a simple proof of quadratic reciprocity by factoring p in
Z[ξq].

Lemma 17.2. The field Q(ξq) contains exactly one quadratic field. It

is Q(
√

(−1)(q−1)/2q).

Proof. The field Q(ξq) is Galois since all the conjugates of ξq are powers
of ξq and hence Φq splits completely in Q(ξq). It is clear that the Galois
group is (Z/aZ)∗ which is cyclic of even order, so there is exactly one
subgroup of index 2, and one subfield of degree 2. Since Q(ξq) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(

√
q)

and Q(
√
−q). By checking the ramification at 2, we see that if q ≡ 1

(mod 4) it is Q(
√
q), if q ≡ 3 (mod 4), then −q ≡ 1 (mod 4), so it

must be Q(
√
−q). �

What has this got to do with cyclotomic fields? The first fact is that(
q
p

)
= 1 if and only if x2 − q factors mod p. This is the same thing as

saying that
poE = p1p2

in a certain quadratic extension E. Why is this helpful? Because Q(ξq)
contains a unique quadratic field.

Lemma 17.3. The field Q(ξq) contains exactly one quadratic field. It

is Q(
√

(−1)(q−1)/2q).

Proof. The field Q(ξq) is Galois since all the conjugates of ξq are powers
of ξq and hence Φq splits completely in Q(ξq). It is clear that the Galois
group is (Z/aZ)∗ which is cyclic of even order, so there is exactly one
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subgroup of index 2, and one subfield of degree 2. Since Q(ξq) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(

√
q)

and Q(
√
−q). By checking the ramification at 2, we see that if q ≡ 1

(mod 4) it is Q(
√
q), if q ≡ 3 (mod 4), then −q ≡ 1 (mod 4), so it

must be Q(
√
−q). �


