Math 430 Tom Tucker NOTES FROM CLASS 10/27

Lemma 16.1. Suppose that L is Galois over K. Let \mathfrak{q} be maximal in B with $\mathfrak{q} \cap A = \mathfrak{p}$ and let $f = [B/\mathfrak{q} : A/\mathfrak{p}]$. Then $N(\mathfrak{q}) = \mathfrak{p}^f$.

Proof. Since we know that $N(\mathfrak{q})$ is a power of \mathfrak{p} , it suffices to show that $A_{\mathfrak{p}} N(\mathfrak{q}) = \mathfrak{p}^{f}$, which is equivalent to showing that $N(S^{-1}B\mathfrak{q}) = \mathfrak{p}^{f}$, where $S = A \setminus \mathfrak{p}$. We write

$$N(q) = p^{\ell}$$

So it suffices to show this for $A = A_{\mathfrak{p}}$ and $B = S^{-1}B$. In this case, B is a principal ideal domain and we may write $\mathfrak{q} = B\pi$. Now, letting $G = \operatorname{Gal}(L/K)$, we see that

$$B \operatorname{N}(\mathfrak{q}) = B \operatorname{N}(B\pi) = \prod_{\sigma \in G} B\sigma(\pi) = B \prod_{\sigma \in G} \sigma(\mathfrak{q}).$$

Letting $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ be the distinct conjugates of \mathfrak{q} , i.e. all the primes of B lying over \mathfrak{p} , we see that

$$B \operatorname{N}(\mathfrak{q}) = \mathfrak{q}_1^t \cdots \mathfrak{q}_m^t$$

where t = n/m. (since *n* is the size of *G*). Now, we know that the relative degrees $[B/\mathfrak{q}_i : A/\mathfrak{p}]$ are all equal to some fixed number *f*, and likewise all the ramification indices are equal to some fixed *e*, so we have

$$B\mathfrak{p}=\mathfrak{q}_1^e\cdots\mathfrak{q}_m^e$$

with mef = n, so e = n/mf. Thus, t = f, and our proof is complete.

Theorem 16.2. Let *L* be any finite separable extension of *K* and let *A* and *B* be a usual. Let \mathfrak{q} be maximal in *B* with $\mathfrak{q} \cap A = \mathfrak{p}$ and let $f = [B/\mathfrak{q} : A/\mathfrak{p}]$. Then $N(\mathfrak{q}) = \mathfrak{p}^f$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathfrak{m} be a maximal ideal of R with $\mathfrak{m} \cap B = \mathfrak{q}$. From the previous Lemma, we know that $N_{M/L}(\mathfrak{m}) = \mathfrak{q}^{[R/\mathfrak{m}:B/\mathfrak{q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$N_{L/K}(\mathfrak{q}^{[R/\mathfrak{m}:B/\mathfrak{q}]}) = N_{L/K}(N_{M/L}(\mathfrak{m})) = N_{M/K}(\mathfrak{m}) = \mathfrak{p}^{[R/\mathfrak{m}:A/\mathfrak{p}]}$$

Thus

$$N_{L/K}(\mathfrak{q}) = \mathfrak{p}^{\frac{[R/\mathfrak{m}:A/\mathfrak{p}]}{[R/\mathfrak{m}:B/\mathfrak{q}]}} = \mathfrak{p}^f,$$

where $f = [B/\mathfrak{q} : A/\mathfrak{p}].$

Now, a quick beginning to cyclotomic fields. All of this is over \mathbb{Q} . We will use the following notation a lot: ξ_m is called a *primitive root* of unity if $\xi^m = 1$ and $\xi^n \neq 1$ for all $1 \leq n < m$.

We let $\Phi(x)$ denote the polynomial $(x^p - 1)/(x - 1)$. It is easily seen that $\Phi(x + 1)$ is Eisenstein and therefore irreducible.

Before we continue with generalities about cyclotomic fields, a quick example with norms in the Gaussian integers.

An easy application. Which positive numbers m can be written as $a^2 + b^2$ for integers a and b?

Theorem 16.3. A positive integer m can be written as $a^2 + b^2$ for integers a and b if and only if every prime $p \mid m$ such that $p \equiv 3 \pmod{4}$ appears to an even power in the factorization of m.

Proof. Let $B = \mathbb{Z}[i]$. Then $N(a + bi) = a^2 + b^2$, for $a, b \in \mathbb{Z}$. Since B is a principal ideal domain, a positive integer m = N(a + bi) for some $a + bi \in B$ if and only if (m) = N(I) for some ideal I of B. Every ideal of B factors into prime ideals \mathfrak{q} . For each \mathfrak{q} with $\mathfrak{q} \cap \mathbb{Z} = p$, we have $N(\mathfrak{q}) = (p)$ if p is not congruent to 3 (mod 4) and $N(\mathfrak{q}) = p^2$ if p is congruent to 3 (mod 4). Thus the possible norms of ideals of B are simply the integers m such that every prime $p \mid m$ such that $p \equiv 3$ (mod 4) appears to an even power in the factorization of m.

Now, back to cyclotomic fields. Let $q = p^a > 2$. Let

$$\Phi_q(X) = X^{p^{a-1}(p-1)} + X^{p^{a-1}(p-2)} + \dots + X^{p^{a-1}} + 1.$$

Then

$$\Phi_q(X) = \frac{X^q - 1}{X^{p^{a-1}} - 1}$$

Let ξ_q be a primitive q-th root of unity. Then

$$\Phi_q(X) = \prod_{\substack{1 \le k < q \\ (k,q) = 1}} (X - \xi_q^k)$$

More generally we define the m-th cyclotomic polynomial as

$$\Phi_m(X) = \prod_{\substack{1 \le k < m \\ (k,m) = 1}} (X - \xi_q^k).\}$$

Recall the Euler ϕ -function given by

 $\phi(m) = \#\{k \mid 1 \leq k < m \text{ such that } (k,m) = 1.\}$

(Here (k, m) is the greatest divisor of m and k.)

Recall the usual properties of ϕ , e.g. $\phi(ab) = \phi(a)\phi(b)$ if a and b are coprime and $\phi(p^a) = p^a - p^{a-1}$.

Theorem 16.4. The polynomial $\Phi_q(X)$ is irreducible and is therefore the minimal monic for ξ_q .

Proof. Note that $\Phi_q(1) = 1 + 1^2 + \cdots + 1^{p-1} = p$. Note also that if gcd(k,q) = 1, then $(1 - \xi_q^k)/(1 - \xi_q) = 1 + \xi_q + \cdots + \xi_q^{k-1}$, so is in $\mathbb{Z}[\xi_q]$, and since $\xi_q = \xi_q^{kj}$ for j the inverse of k modulo q, we also have that $(1 - \xi_q)/(1 - \xi_q^k)$ is in $\mathbb{Z}[\xi_q]$. Thus, $(1 - \xi_q^k)/(1 - \xi_q)$ is a unit in $\mathbb{Z}[\xi_q]$. Thus, we have

$$\Phi_q(1) = \prod_{\substack{1 \le k < q \\ (k,q) = 1}} (1 - \xi_q^k) = \prod_{\substack{1 \le k < q \\ (k,q) = 1}} u_k (1 - \xi_q) = u (1 - \xi_q)^{\phi(q)},$$

where u_k and u are units (in $\mathbb{Z}[\xi_q]$). Similarly, for any k such that (k,q) = 1, we have $v(1 - \xi_q^k)^{\phi(q)} = p$ for a unit v. It follows that $(1 - \xi_q^k)$ is not a unit for (k,q) = 1. Now, if $\Phi_q(X) = F(X)G(X)$ for polynomials F and G over \mathbb{Z} , either $F(1) = \pm 1$ or $G(1) = \pm 1$. But since each is a product of $(1 - \xi_q^k)$ for various k, neither can be a unit, so Φ_q must be irreducible.