
Math 430 Tom Tucker
NOTES FROM CLASS 10/27

Lemma 16.1. Suppose that L is Galois over K. Let q be maximal in
B with q ∩ A = p and let f = [B/q : A/p]. Then N(q) = pf .

Proof. Since we know that N(q) is a power of p, it suffices to show that
Ap N(q) = pf , which is equivalent to showing that N(S−1Bq) = pf ,
where S = A \ p. We write

N(q) = p`.

So it suffices to show this for A = Ap and B = S−1B. In this case, B
is a principal ideal domain and we may write q = Bπ. Now, letting
G = Gal(L/K), we see that

BN(q) = BN(Bπ) =
∏
σ∈G

Bσ(π) = B
∏
σ∈G

σ(q).

Letting q1, . . . , qm be the distinct conjugates of q, i.e. all the primes of
B lying over p, we see that

BN(q) = qt1 · · · qtm,

where t = n/m. (since n is the size of G). Now, we know that the
relative degrees [B/qi : A/p] are all equal to some fixed number f , and
likewise all the ramification indices are equal to some fixed e, so we
have

Bp = qe1 · · · qem,
with mef = n, so e = n/mf . Thus, t = f , and our proof is complete.

�

Theorem 16.2. Let L be any finite separable extension of K and let
A and B be a usual. Let q be maximal in B with q ∩ A = p and let
f = [B/q : A/p]. Then N(q) = pf .

Proof. Let M be the Galois closure of L over K. Let R be the integral
closure of B in M , which is also the integral closure of A in M . Let m
be a maximal ideal of R with m ∩ B = q. From the previous Lemma,
we know that NM/L(m) = q[R/m:B/q]. By the previous Lemma and
transitivity of the norm, we know that

NL/K(q[R/m:B/q]) = NL/K(NM/L(m)) = NM/K(m) = p[R/m:A/p].

Thus

NL/K(q) = p
[R/m:A/p]
[R/m:B/q] = pf ,

where f = [B/q : A/p]. �
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Now, a quick beginning to cyclotomic fields. All of this is over Q.
We will use the following notation a lot: ξm is called a primitive root
of unity if ξm = 1 and ξn 6= 1 for all 1 ≤ n < m.

We let Φ(x) denote the polynomial (xp− 1)/(x− 1). It is easily seen
that Φ(x+ 1) is Eisenstein and therefore irreducible.

Before we continue with generalities about cyclotomic fields, a quick
example with norms in the Gaussian integers.

An easy application. Which positive numbers m can be written as
a2 + b2 for integers a and b?

Theorem 16.3. A positive integer m can be written as a2 + b2 for
integers a and b if and only if every prime p | m such that p ≡ 3
(mod 4) appears to an even power in the factorization of m.

Proof. Let B = Z[i]. Then N(a + bi) = a2 + b2, for a, b ∈ Z. Since B
is a principal ideal domain, a positive integer m = N(a + bi) for some
a + bi ∈ B if and only if (m) = N(I) for some ideal I of B. Every
ideal of B factors into prime ideals q. For each q with q ∩ Z = p, we
have N(q) = (p) if p is not congruent to 3 (mod 4) and N(q) = p2 if
p is congruent to 3 (mod 4). Thus the possible norms of ideals of B
are simply the integers m such that every prime p | m such that p ≡ 3
(mod 4) appears to an even power in the factorization of m. �

Now, back to cyclotomic fields. Let q = pa > 2. Let

Φq(X) = Xpa−1(p−1) +Xpa−1(p−2) + · · ·+Xpa−1

+ 1.

Then

Φq(X) =
Xq − 1

Xpa−1 − 1
.

Let ξq be a primitive q-th root of unity. Then

Φq(X) =
∏

1≤k<q
(k,q)=1

(X − ξkq ).

More generally we define the m-th cyclotomic polynomial as

Φm(X) =
∏

1≤k<m
(k,m)=1

(X − ξkq ).}

Recall the Euler φ-function given by

φ(m) = #{k | 1 ≤ k < m such that (k,m) = 1.}
(Here (k,m) is the greatest divisor of m and k.)
Recall the usual properties of φ, e.g. φ(ab) = φ(a)φ(b) if a and b are

coprime and φ(pa) = pa − pa−1.
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Theorem 16.4. The polynomial Φq(X) is irreducible and is therefore
the minimal monic for ξq.

Proof. Note that Φq(1) = 1 + 12 + · · · + 1p−1 = p. Note also that if
gcd(k, q) = 1, then (1− ξkq )/(1− ξq) = 1 + ξq + · · ·+ ξk−1q , so is in Z[ξq],

and since ξq = ξkjq for j the inverse of k modulo q, we also have that

(1− ξq)/(1− ξkq ) is in Z[ξq]. Thus, (1− ξkq )/(1− ξq) is a unit in Z[ξq].
Thus, we have

Φq(1) =
∏

1≤k<q
(k,q)=1

(1− ξkq ) =
∏

1≤k<q
(k,q)=1

uk(1− ξq) = u(1− ξq)φ(q),

where uk and u are units (in Z[ξq]). Similarly, for any k such that
(k, q) = 1, we have v(1 − ξkq )φ(q) = p for a unit v. It follows that

(1 − ξkq ) is not a unit for (k, q) = 1. Now, if Φq(X) = F (X)G(X) for
polynomials F and G over Z, either F (1) = ±1 or G(1) = ±1. But
since each is a product of (1− ξkq ) for various k, neither can be a unit,
so Φq must be irreducible. �


