Math 430 Tom Tucker
NOTES FROM CLASS 10/21

Lemma 15.1. Let L be a separable (not necessarily Galois) field ex-
tenston of K of degree n, let M be the Galois closure of L over K,
and let G = Gal(M/L). Let H = Hj, be the subgroup of G that acts
trivially on L and let H\G be a complete set of coset representatives
for G over H. Then, for any y € L, we have

Tyxly) = Y o)
c€H\G

and

Np) = [[ o)

c€H\G

Proof. Let vy, ..., ym be the conjugates of y. Then we know that

Trx(y) =[L: K(y)] (Z yz-)

(L:K(y)]
NL/K (H yz>

(since the characteristic polynomial of y must be a power of the minimal
polynomial of y and for the degrees to match up that power must be
L: K(y)).

Now, let H, be the subgroup of G that acts identically on K(y).
Then H is a subgroup of H, and H\G will contain will contain [H, :
H] =[L: K(y)] copies of H,\G.

and

Then
d oy =[L: K@) Y o)
oc€H\G c€eH,\G
(Z%) TL/K )
and

Il cw="11 o™=
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m [L:K (y)]
= (H Z/z) = NL/K(?J>[L:K(y)]7
i=1

as desired. O
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Proposition 15.2. Let K C E C L be finite seprable extension of K.
Then, for any y € L, we have

Nk (y) = Neg/x(Ni/e(y)).

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let Hg and Hp, be the subgroups of G that act identically
on F and L respectively. Note that Hg is the Galois group for M over
E. Let 7,...,7s represent the cosets Hg\G and ~1,...,v; represent
the cosets Hy\ Hg, then the 7,7; represent the cosets H;\G. Therefore,

Nux() = [[rw) =11 Ti(H 7)) = Ny (Neys(y))-

One more thing to prove before getting to norms of ideals.

Proposition 15.3. Let B be a Dedekind domain with finitely many
maximal ideals p. Then B is a principal ideal domain.

Proof. 1t will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maxima ideal of B and let qi,...,q,, be the other
maximal ideals of B. Then p? # p by unique factorization of ideals,
so there is a 8 € p \ p2. . We have that p?, qy,...,q,, are all coprime
so we may apply the Chinese remainder theorem to find an « that
is congruent to 8 mod p? and congruent to 1 mod all the q;. Then
Ba =p. 0

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We’ll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm Ny /x : L — K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

One more thing to prove before getting to norms of ideals.

Proposition 15.4. Let B be a Dedekind domain with finitely many
mazximal ideals p. Then B s a principal ideal domain.

Proof. Tt will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maximal ideal of B and let qq,...,q, be the other
maximal ideals of B and let
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Then p? + I = 1. Since p # p? (by unique factorization), there is some
a € p\ p?. By Chinese Remainder Theorem, we may choose 7 such
that 7 is congruent to 1 modulo I and congruent to @ modulo p?. Then
the only possible factorization of () is (y) = p. O

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We'll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm Ny /x : L — K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

Definition 15.5. For any ideal I C B, we define the ideal N(/) to be
the A-ideal generated by all N(z) for z € I.

Properties of the norm (8.1 on p. 42)

Proposition 15.6. The norm map has the following properties
(1) N(By) = AN(y) for any y € B.
(2) If S C A is a multiplicative subset not containing 0, and I is an
ideal of B, then N(S™'BI) = ST'AN(I).
(3) N({J) = N(I)N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) C A, it follows that N(By) C AN(y).
Also, N(y) € N(By), so AN(y) C N(By), so N(By) = AN(y).

2. For any y € S7'BI, we can write y = x/s for # € [ and s €
S. Then N(y) = N(z/s) = N(z)/s" € STPAN(I), so N(S™'BI) C
STYAN(I). On the other hand, ST'AN([) is generated as an S~'A-
module by N(I), and N(I) € N(S7'BI), so we have ST!AN(I) C
N(S™!'BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determined by its localizations
at all the maximal p of A, it will suffice to show that A, N(1)A, N(J) =
A, N(1J). From 2, this means we only have to show that

N(S™'BI)N(S'BJ) = N(S~'BI.J).

Since there are finitely many primes q € B such that g A = p, the

ring S7!'B has finitely many primes, hence is a principal ideal domain.
So we write S™!Bx = S™'BI and S™'By = S™'B.J. Then we have

N(S'BI)N(S™'BJ) = N(S™'Bx) N(S~'By)
= N(S™'Bxy) = N(S™'BIJ),

and we are done. O



Now, we want to figure out what the norm of a prime ideal in B is.
We begin with a simple observation.

Lemma 15.7. Let qN A = p for q a maximal ideal of B. Then N(q)
is a power of p.

Proof. First of all, we know that N(q) cannot be all of A since writing
N(y) is a power of y; - - -y, where the y; are the conjugates of y, one of
which is y itself. Thus N(y) C g, so N(y) C qNA =p. Since p C q and
N(a) = a"™ (n = [L : k], as usual), N(q) contains a™ for every a € p. So
N(q) contains p™. Thus, it cannot be contained in any maximal ideal
other than p, since p? is prime to any maximal ideal other than p, and
our proof is complete. 0



