
Math 430 Tom Tucker
NOTES FROM CLASS 10/21

Lemma 15.1. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K,
and let G = Gal(M/L). Let H = HL be the subgroup of G that acts
trivially on L and let H\G be a complete set of coset representatives
for G over H. Then, for any y ∈ L, we have

TL/K(y) =
∑

σ∈H\G

σ(y)

and
NL/K(y) =

∏
σ∈H\G

σ(y)

Proof. Let y1, . . . , ym be the conjugates of y. Then we know that

TL/K(y) = [L : K(y)]

(
m∑
i=1

yi

)
and

NL/K(y) =

(
m∏
i=1

yi

)[L:K(y)]

(since the characteristic polynomial of y must be a power of the minimal
polynomial of y and for the degrees to match up that power must be
[L : K(y)]).

Now, let Hy be the subgroup of G that acts identically on K(y).
Then H is a subgroup of Hy and H\G will contain will contain [Hy :
H] = [L : K(y)] copies of Hy\G.

Then ∑
σ∈H\G

σ(y) = [L : K(y)]
∑

σ∈Hy\G

σ(y)

= [L : K(y)]

(
m∑
i=1

yi

)
= TL/K(y),

and ∏
σ∈H\G

σ(y) =
∏

σ∈Hy\G

σ(y)[L:K(y)]

=

(
m∏
i=1

yi

)[L:K(y)]

= NL/K(y)[L:K(y)],

as desired. �
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Proposition 15.2. Let K ⊆ E ⊆ L be finite seprable extension of K.
Then, for any y ∈ L, we have

NL/K(y) = NE/K(NL/E(y)).

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let HE and HL be the subgroups of G that act identically
on E and L respectively. Note that HE is the Galois group for M over
E. Let τ1, . . . , τs represent the cosets HE\G and γ1, . . . , γt represent
the cosets HL\HE, then the τiγj represent the cosets HL\G. Therefore,

NL/K(y) =
∏
i,j

(τiγj)(y) =
s∏
i=1

τi(
t∏

j=1

γj(y)) = NE/K(NL/E(y)).

�

One more thing to prove before getting to norms of ideals.

Proposition 15.3. Let B be a Dedekind domain with finitely many
maximal ideals p. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maxima ideal of B and let q1, . . . , qm be the other
maximal ideals of B. Then p2 6= p by unique factorization of ideals,
so there is a β ∈ p \ p2. . We have that p2, q1, . . . , qm are all coprime
so we may apply the Chinese remainder theorem to find an α that
is congruent to β mod p2 and congruent to 1 mod all the qi. Then
Bα = p. �

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We’ll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm NL/K : L −→ K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

One more thing to prove before getting to norms of ideals.

Proposition 15.4. Let B be a Dedekind domain with finitely many
maximal ideals p. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maximal ideal of B and let q1, . . . , qm be the other
maximal ideals of B and let

I = q1 · · · qm.
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Then p2 + I = 1. Since p 6= p2 (by unique factorization), there is some
a ∈ p \ p2. By Chinese Remainder Theorem, we may choose γ such
that γ is congruent to 1 modulo I and congruent to a modulo p2. Then
the only possible factorization of (γ) is (γ) = p. �

Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We’ll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm NL/K : L −→ K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

Definition 15.5. For any ideal I ⊂ B, we define the ideal N(I) to be
the A-ideal generated by all N(x) for x ∈ I.

Properties of the norm (8.1 on p. 42)

Proposition 15.6. The norm map has the following properties

(1) N(By) = AN(y) for any y ∈ B.
(2) If S ⊂ A is a multiplicative subset not containing 0, and I is an

ideal of B, then N(S−1BI) = S−1AN(I).
(3) N(IJ) = N(I) N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) ⊂ A, it follows that N(By) ⊂ AN(y).
Also, N(y) ⊂ N(By), so AN(y) ⊂ N(By), so N(By) = AN(y).

2. For any y ∈ S−1BI, we can write y = x/s for x ∈ I and s ∈
S. Then N(y) = N(x/s) = N(x)/sn ∈ S−1AN(I), so N(S−1BI) ⊆
S−1AN(I). On the other hand, S−1AN(I) is generated as an S−1A-
module by N(I), and N(I) ⊆ N(S−1BI), so we have S−1AN(I) ⊆
N(S−1BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determined by its localizations
at all the maximal p of A, it will suffice to show that Ap N(I)Ap N(J) =
Ap N(IJ). From 2, this means we only have to show that

N(S−1BI) N(S−1BJ) = N(S−1BIJ).

Since there are finitely many primes q ∈ B such that q ∩ A = p, the
ring S−1B has finitely many primes, hence is a principal ideal domain.
So we write S−1Bx = S−1BI and S−1By = S−1BJ . Then we have

N(S−1BI) N(S−1BJ) = N(S−1Bx) N(S−1By)

= N(S−1Bxy) = N(S−1BIJ),

and we are done. �
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Now, we want to figure out what the norm of a prime ideal in B is.
We begin with a simple observation.

Lemma 15.7. Let q ∩ A = p for q a maximal ideal of B. Then N(q)
is a power of p.

Proof. First of all, we know that N(q) cannot be all of A since writing
N(y) is a power of y1 · · · ym where the yi are the conjugates of y, one of
which is y itself. Thus N(y) ⊆ q, so N(y) ⊆ q∩A = p. Since p ⊆ q and
N(a) = an (n = [L : k], as usual), N(q) contains an for every a ∈ p. So
N(q) contains pn. Thus, it cannot be contained in any maximal ideal
other than p, since p2 is prime to any maximal ideal other than p, and
our proof is complete. �


