Math 430 Notes from Class 10/16

Recall the following from last time.

Proposition 14.1. Let $B' \subset B$ where B and B' are as usual (we will usually take B to the be the integral closure of A in L). Suppose that B has a basis v_1, \ldots, v_n as an A-module and that B' has a basis w_1, \ldots, w_n as an A-module. Writing

$$w_i = \sum_{\ell=1}^n n_{i\ell} a_\ell,$$

and letting N be the matrix $[n_{i\ell}]$, we have

(1)
$$\det[\mathbf{T}_{L/K}(w_i w_j)] = (\det N)^2 \det[\mathbf{T}_{L/K}(v_i v_j)].$$

This proof follows simply from the facat that $(x, y) = T_{L/K}(xy)$ is a bilinear form. The proof works exactly the same for any bilinear form.

Note that it follows from the above that when B is free with basis $\{v_1, \ldots, v_n\}$, then $\Delta(B/A)$ is simply det $[T_{L/K}(v_iv_j)]$. It also follows if B is free and B' is as usual (integral over A with field of fractions L), then B = B' if and only if $\Delta(B'/A) = \Delta(B/A)$.

Corollary 14.2. Let $B' \subset B$ with B' and B as usual. Then

$$\Delta(B/A)(\Delta(B'/A))^{-1} = I^2$$

for some ideal I in A.

Proof. Recall that we can compute discriminants locally, and that a nonzero ideal J if and only if for every maximal \mathfrak{p} in A, we have $A_{\mathfrak{p}}J = A_{\mathfrak{p}}\mathfrak{p}^{2e_{\mathfrak{p}}}$ for some integer $e_{\mathfrak{p}}$. At each \mathfrak{p} , taking $S = A \setminus \mathfrak{p}$ the $A_{\mathfrak{p}}$ -modules $S^{-1}B$ and $S^{-1}B'$ are free $A_{\mathfrak{p}}$ -modules, so we can apply the previous Proposition to $\Delta(S^{-1}B/A_{\mathfrak{p}})$ and $\Delta(S^{-1}B'/A_{\mathfrak{p}})$. Since det $N \in A_{\mathfrak{p}}$, $(\det N)^2$ is an even power of \mathfrak{p} (possibly 0)

Corollary 14.3. Let B' be as usual. Let \mathfrak{q} be maximal in B' and let $\mathfrak{p} = \mathfrak{q} \cap A$. Then \mathfrak{q} is invertible whenever \mathfrak{p}^2 doesn't divide $\Delta(B'/A)$.

Proof. We replace B' with $S^{-1}B'$, where $S = A \setminus \mathfrak{p}$, which we'll just write as B', and replace A with $A_{\mathfrak{p}}$. It will suffice to show that B'is a Dedekind domain, which is equivalent to showing that it is equal to the integral closure B of A in L. Then B' = B if and only if $\Delta(B/A) = \Delta(B'/A)$ and $\Delta(B'/A) = I^2 \Delta(B/A)$ for some ideal I. So if $B' \neq B$, then \mathfrak{p}^2 divides $\Delta(B'/A)$. Thus, if \mathfrak{p}^2 doesn't divide $\Delta(B'/A)$, then B = B'. We are most interested in the case $A = \mathbb{Z}$, $K = \mathbb{Q}$, and L is a number field. Suppose we start with θ integral over \mathbb{Z} and such that $L = \mathbb{Q}(\theta)$. We want to find the integral closure \mathcal{O}_L (also called the ring of integers and the maximal order of L). The following proposition (like Prop. 9.1 from the book) gives some info on it.

(Prop. 9.1, p. 47)

Proposition 14.4. let $L = \mathbb{Q}(\theta)$ for integral θ . Write $|\Delta(\mathbb{Z}[\theta]/\mathbb{Z})| = dm^2$. Then the every element in the ring of integers \mathcal{O}_L has the form

$$\frac{a_0 + a_1\theta + \dots + a_{n-1}\theta^{n-1}}{t}$$

with

$$gcd(a_0, \ldots, a_{n-1}, t) = 1, and t \mid m$$

Proof. Let

$$w_1 = \frac{a_0 + a_1\theta + \dots + a_{n-1}\theta^{n-1}}{t}$$

with

$$gcd(a_0,\ldots,a_{n-1},t)=1$$

be in \mathcal{O}_L . We will show that $t^2 \mid \Delta(\mathbb{Z}[\theta]/\mathbb{Z})$. It will suffice to show this when t is a power of prime since if the powers of two distinct primes divide a number, then so does their product. We write $t = p^e$. Since $\gcd(a_0, \ldots, a_{n-1}, t) = 1$, there is some a_i such that $p \nmid a_i$. Then we see that the set $\{p^e w_1\} \cup \{1, \theta, \ldots, \theta^{i-1}, \theta^{i+1}, \ldots, \theta^{n-1}\}$ is a basis for $\mathbb{Z}_{(p)}[\theta]$ over $\mathbb{Z}_{(p)}$. The matrix giving the trace form with respect to this basis has determinant divisible by p^{2e} (since the determinant of the matrix giving the trace form with respect to $\{w_1\} \cup$ $\{1, \theta, \ldots, \theta^{i-1}, \theta^{i+1}, \ldots, \theta^{n-1}\}$ is an integer). Thus, p^{2e} must divide the discriminant $\Delta(S^{-1}\mathbb{Z}[\theta]/\mathbb{Z}_{(p)})$, so t^2 divides $\Delta(\mathbb{Z}[\theta]/\mathbb{Z})$, as desired. \Box

We can also easily derive the above from the Corollary stated just before it.

Now, to change gears slightly, let's prove a few facts about our usual set-up when we take Galois extensions of field K. In what follows, A is Dedekind, K is its field of fractions, L is a finite Galois extension of K, and B is the integral closure of A in M.

We have the following Lemma.

Lemma 14.5. Keep the notation above. Let \mathfrak{p} be a maximal ideal of A. Let $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ be the primes in B for which $\mathfrak{q}_i \cap A = \mathfrak{p}$. Then for every $\sigma \in \operatorname{Gal}(L/K)$, the set $\sigma(\mathfrak{q}_i)$ is one of the primes \mathfrak{q}_j of B lying over \mathfrak{p} . Furthermore, σ acts transitively on the set $\{\mathfrak{q}_1, \ldots, \mathfrak{q}_m\}$

Proof. If y is integral over A, then so is $\sigma(y)$ for any $\sigma \in \text{Gal}(L/K)$ (we showed this earlier). Thus $\sigma : B \longrightarrow B$ isomorphically. In particular, it sends any prime \mathfrak{q}_i to some prime \mathfrak{q} . Since σ acts identically on K, we see that $\sigma(\mathfrak{q}_i \cap A) = \mathfrak{q}_i \cap A = \mathfrak{p}$, so $\sigma(\mathfrak{q}_i) \cap A = \mathfrak{p}$ and $\sigma(\mathfrak{q}_i) = \mathfrak{q}_j$ for some j.

To see that $\operatorname{Gal}(L/K)$ acts transitively $\{\mathfrak{q}_1, \ldots, \mathfrak{q}_m\}$, we suppose that it didn't. Then we could divide $\{\mathfrak{q}_1, \ldots, \mathfrak{q}_m\}$ into 2 disjoint sets T and U such that $\sigma(\mathfrak{q}_i) \in T$ for each $\mathfrak{q}_i \in T$ and $\sigma(\mathfrak{q}_i) \in U$ for each $\mathfrak{q}_i \in U$. We then let

$$I = \prod_{\mathfrak{q}_i \in T} \mathfrak{q}_i$$
 and $J = \prod_{\mathfrak{q}_j \in U} \mathfrak{q}_j$.

We have $\sigma(I) = I$ and $\sigma(J) = J$. Now, I and J must be coprime, so we can find x + y = 1 for some $x \in I$ and $y \in J$. Then x = 1 - y and

$$\prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(x) \in I \cap K \subseteq \mathfrak{p} \subseteq J,$$

(the last inclusion is because $\mathfrak{p} \subseteq \mathfrak{q}_1 \cdots \mathfrak{q}_m$), but on the other hand

$$\prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(x) = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(1-y) = \prod_{\sigma \in \operatorname{Gal}(L/K)} (1-\sigma(y)) \in 1+J,$$

which gives a contradiction.

(Stuff from p. 32-33)

Theorem 14.6. With notation as above (including L Galois over K), any maximal prime \mathfrak{p} factors in B as

$$\mathfrak{p}B = (\mathfrak{q}_1 \cdots \mathfrak{q}_m)^e$$

where the q_i are distinct primes B. We also have

$$[B/\mathfrak{q}_i:A/\mathfrak{p}] = [B/\mathfrak{q}_j:A/\mathfrak{p}]$$

for any i, j.

Proof. Let $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ be all the primes in B lying over \mathfrak{p} . Since $\mathfrak{p} \subset A$ and every element $\sigma \in \operatorname{Gal}(L/K)$ acts identially on A, we have $\sigma(\mathfrak{p}B) = \mathfrak{p}\sigma(B) = \mathfrak{p}B$. Writing

$$\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}=\mathfrak{p}B=\sigma(\mathfrak{p}B)=\sigma(\mathfrak{q}_1)^{e_1}\cdots\sigma(\mathfrak{q}_m)^{e_m},$$

we see that $e_i = e_j$ for every i, j since for any i, j there is some σ such that $\sigma(\mathbf{q}_i) = \sigma(\mathbf{q}_j)$. Letting $e = e_i$, we have

$$\mathfrak{p}B = (\mathfrak{q}_1 \cdots \mathfrak{q}_m)^e.$$

Since $\sigma \in \operatorname{Gal}(L/K)$ is an automorphism that fixes A, it induces an automorphism of A/\mathfrak{p} vector spaces from B/\mathfrak{q}_i to $B/\sigma(\mathfrak{q}_i)$. Since σ acts transitively, this means that

$$[B/\mathfrak{q}_i:A/\mathfrak{p}] = [B/\mathfrak{q}_j:A/\mathfrak{p}]$$

for every i, j.

We will want to work with norms of ideals in a bit. There is one more thing to prove about norms first. First a Lemma.