
Math 430
Notes from Class 10/16

Recall the following from last time.

Proposition 14.1. Let B′ ⊂ B where B and B′ are as usual (we will
usually take B to the be the integral closure of A in L). Suppose that B
has a basis v1, . . . , vn as an A-module and that B′ has a basis w1, . . . , wn
as an A-module. Writing

wi =
n∑
`=1

ni`a`,

and letting N be the matrix [ni`], we have

(1) det[TL/K(wiwj)] = (detN)2 det[TL/K(vivj)].

This proof follows simply from the facat that (x, y) = TL/K(xy) is a
bilinear form. The proof works exactly the same for any bilinear form.

Note that it follows from the above that when B is free with basis
{v1, . . . , vn}, then ∆(B/A) is simply det[TL/K(vivj)]. It also follows if
B is free and B′ is as usual (integral over A with field of fractions L),
then B = B′ if and only if ∆(B′/A) = ∆(B/A).

Corollary 14.2. Let B′ ⊂ B with B′ and B as usual. Then

∆(B/A)(∆(B′/A))−1 = I2

for some ideal I in A.

Proof. Recall that we can compute discriminants locally, and that a
nonzero ideal J if and only if for every maximal p in A, we haveApJ =
App

2ep for some integer ep. At each p, taking S = A\p the Ap-modules
S−1B and S−1B′ are free Ap-modules, so we can apply the previous
Proposition to ∆(S−1B/Ap) and ∆(S−1B′/Ap). Since detN ∈ Ap,
(detN)2 is an even power of p (possibly 0) �

Corollary 14.3. Let B′ be as usual. Let q be maximal in B′ and let
p = q ∩ A. Then q is invertible whenever p2 doesn’t divide ∆(B′/A).

Proof. We replace B′ with S−1B′, where S = A \ p, which we’ll just
write as B′, and replace A with Ap. It will suffice to show that B′

is a Dedekind domain, which is equivalent to showing that it is equal
to the integral closure B of A in L. Then B′ = B if and only if
∆(B/A) = ∆(B′/A) and ∆(B′/A) = I2∆(B/A) for some ideal I. So if
B′ 6= B, then p2 divides ∆(B′/A). Thus, if p2 doesn’t divide ∆(B′/A),
then B = B′. �
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We are most interested in the case A = Z, K = Q, and L is a number
field. Suppose we start with θ integral over Z and such that L = Q(θ).
We want to find the integral closure OL (also called the ring of integers
and the maximal order of L). The following proposition (like Prop. 9.1
from the book) gives some info on it.

(Prop. 9.1, p. 47)

Proposition 14.4. let L = Q(θ) for integral θ. Write |∆(Z[θ]/Z)| =
dm2. Then the every element in the ring of integers OL has the form

a0 + a1θ + · · ·+ an−1θ
n−1

t

with

gcd(a0, . . . , an−1, t) = 1, and t | m

Proof. Let

w1 =
a0 + a1θ + · · ·+ an−1θ

n−1

t
with

gcd(a0, . . . , an−1, t) = 1

be in OL. We will show that t2 | ∆(Z[θ]/Z). It will suffice to show
this when t is a power of prime since if the powers of two distinct
primes divide a number, then so does their product. We write t = pe.
Since gcd(a0, . . . , an−1, t) = 1, there is some ai such that p - ai. Then
we see that the set {pew1} ∪ {1, θ, . . . , θi−1, θi+1, . . . , θn−1} is a ba-
sis for Z(p)[θ] over Z(p). The matrix giving the trace form with re-
spect to this basis has determinant divisible by p2e (since the deter-
minant of the matrix giving the trace form with respect to {w1} ∪
{1, θ, . . . , θi−1, θi+1, . . . , θn−1} is an integer). Thus, p2e must divide the
discriminant ∆(S−1Z[θ]/Z(p)), so t2 divides ∆(Z[θ]/Z), as desired. �

We can also easily derive the above from the Corollary stated just
before it.

Now, to change gears slightly, let’s prove a few facts about our usual
set-up when we take Galois extensions of field K. In what follows, A
is Dedekind, K is its field of fractions, L is a finite Galois extension of
K, and B is the integral closure of A in M .

We have the following Lemma.

Lemma 14.5. Keep the notation above. Let p be a maximal ideal of
A. Let q1, . . . , qm be the primes in B for which qi ∩ A = p. Then for
every σ ∈ Gal(L/K), the set σ(qi) is one of the primes qj of B lying
over p. Furthermore, σ acts transitively on the set {q1, . . . , qm}
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Proof. If y is integral over A, then so is σ(y) for any σ ∈ Gal(L/K) (we
showed this earlier). Thus σ : B −→ B isomorphically. In particular,
it sends any prime qi to some prime q. Since σ acts identically on K,
we see that σ(qi ∩A) = qi ∩A = p, so σ(qi)∩A = p and σ(qi) = qj for
some j.

To see that Gal(L/K) acts transitively {q1, . . . , qm}, we suppose that
it didn’t. Then we could divide {q1, . . . , qm} into 2 disjoint sets T and
U such that σ(qi) ∈ T for each qi ∈ T and σ(qi) ∈ U for each qi ∈ U .
We then let

I =
∏
qi∈T

qi and J =
∏
qj∈U

qj.

We have σ(I) = I and σ(J) = J . Now, I and J must be coprime, so
we can find x+ y = 1 for some x ∈ I and y ∈ J . Then x = 1− y and∏

σ∈Gal(L/K)

σ(x) ∈ I ∩K ⊆ p ⊆ J,

(the last inclusion is because p ⊆ q1 · · · qm), but on the other hand∏
σ∈Gal(L/K)

σ(x) =
∏

σ∈Gal(L/K)

σ(1− y) =
∏

σ∈Gal(L/K)

(1− σ(y)) ∈ 1 + J,

which gives a contradiction. �

(Stuff from p. 32-33)

Theorem 14.6. With notation as above (including L Galois over K),
any maximal prime p factors in B as

pB = (q1 · · · qm)e

where the qi are distinct primes B. We also have

[B/qi : A/p] = [B/qj : A/p]

for any i, j.

Proof. Let q1, . . . , qm be all the primes in B lying over p. Since p ⊂
A and every element σ ∈ Gal(L/K) acts identially on A, we have
σ(pB) = pσ(B) = pB. Writing

qe11 · · · qemm = pB = σ(pB) = σ(q1)
e1 · · ·σ(qm)em ,

we see that ei = ej for every i, j since for any i, j there is some σ such
that σ(qi) = σ(qj). Letting e = ei, we have

pB = (q1 · · · qm)e.
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Since σ ∈ Gal(L/K) is an automorphism that fixes A, it induces an
automorphism of A/p vector spaces from B/qi to B/σ(qi). Since σ
acts transitively, this means that

[B/qi : A/p] = [B/qj : A/p]

for every i, j. �

We will want to work with norms of ideals in a bit. There is one
more thing to prove about norms first. First a Lemma.


