
Math 430
Notes from Class 10/9

Definition 13.1. The discriminant ∆(B′/A) is defined to be ideal
generated by the determinants of all matrices M = [TL/K(wiwj)] as
w1, . . . , wn range over all bases for L consisting of elements contained
in B′.

Example 13.2. The reason that we need to talk about the discrimi-
nant relative toA is thatB′ could be defined over two different Dedekind
domains. For example, we could take B′ = Z[

√
3,
√

7] which is an ex-
tension of Z as well as of Z[

√
3] and Z[

√
7]. The various discriminants

∆(B′/Z), ∆(B′/Z[
√

3]), and ∆(B′/Z[
√

7]) may all be different.

One nice fact about discriminants is that they can be computed
locally. We have the following.

Proposition 13.3. With notation as throughout lecture, let S be a
multiplicative subset of A not containing 0. Then

S−1A∆(B′/A) = ∆(S−1B′/S−1A).

Proof. Since any basis with elements in B′ is also in S−1B′, it is obvious
that

S−1A∆(B′/A) ⊆ ∆(S−1B′/S−1A).

Similarly, given a basis v1, . . . , vn for L/K contained in S−1B′, see
that the basis w1, . . . , wn where wi = svi is contained in B′ for some
s ∈ S. Now

det(TL/K(wiwj)) = sn det(TL/K(vivj)),

so S−1A∆(B′/A) ⊇ ∆(S−1B′/S−1A). �

We know that ∆(B′/A) is an ideal I. If I =
m∏
i=1

peii , then ApiI = peii ,

so to figure out what ∆(B′/A) is, all we have to do is figure out what
∆(S−1B′/S−1A) is for S = A \ p.

The trace also behaves well with respect to reduction. Recall that
whenever we have a finite integral extension of a field, we can de-
fine a trace. We’ll apply that with the field k = A/p for a maximal
ideal p of A. Since this computation is local, we will work over Ap

(which is a DVR). This is just for simplicity, since we have B′/pB′ ∼=
S−1B′/S−1B′p, so it isn’t hard to see that the local computation gives
the computation over A.

Lemma 13.4. Let A and B′ be as usual. Let p be a maximal prime of
A, let k = A/p, let S = A \ p, and let φ : S−1B′ −→ S−1B′/S−1B′p be

1



2

the usual quotient map. Let us denote S−1B′/S−1B′p as C. Then for
any y ∈ S−1B′, we have φ(TL/K(y)) = TC/k(φ(y)).

Proof. Note that since S−1B′ is in S−1B, which is Noetherian, we see
that S−1B′ is a finitely generated Ap-module. Thus, it is a free Ap-
module (since Ap is a DVR and thus a PID) of rank [L : K], so dimC =
[L : K] = n. Let w̄1, . . . , w̄n be a basis for C over k and pick wi ∈ B′
such that φ(wi) = w̄i. Since the w̄i are linearly independent, the wi

must be as well. To see this, suppose that
n∑

i=1

aiwi = 0 for ai ∈ S−1B′

(remember that everything in L is x/a for x ∈ B′ and a ∈ A). By
dividing through by a power of a generator π for App, we can assume

that not all of the ai are in S−1B′p. This means then that
n∑

i=1

φ(ai)w̄i =

0, with some φ(ai) 6= 0, which is impossible. Now, we are essentially
done, since we can define the trace of any y ∈ B′ with respect to this
basis. We have

ywi =
n∑

j=1

mijwj

with mij ∈ A, and

φ(y)w̄i =
n∑

j=1

φ(mij)w̄j.

Hence,

φ(TL/K(y)) =
n∑

i=1

φ(mii) = TC/k(φ(y)).

�

When B is the integral closure of A in L, and p is maximal in A, we
can write

pB = qe11 · · · qemm .

If ei > 1 for some i, then we say that p ramifies in B. When B = A[α],
we know that p ramifies in B if and only if ∆(B/A) ⊆ p. That is true
more generally.

Theorem 13.5. Let B be the integral closure of A in L and let p be
maximal in A. Then ∆(B/A) ⊆ p if and only if p ramifies in B or
B/q is inseparable over A/p for some prime q such that q ∩ A = p.

Proof. It will suffice to prove this locally, that is to say, it will suffice
to replace A with Ap and B with S−1B where S = A \ p. As in the
previous Lemma, we write k = A/p and C = B/pB and let

φ : B −→ B/pB
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Also, as in that Lemma let w̄1, . . . , w̄n be a basis for C over k and pick
wi ∈ B such that φ(wi) = w̄i. It is clear then that

Apw1 + . . . Apwn + pB = B,

so by Nakayama’s Lemma, the wi generate B as an Ap module. From
the Lemma above we have TL/K(wiwj) = TC/k(w̄iw̄j), so the matrix
M = [TC/k(w̄iw̄j)] represents the form (x, y) = TC/k(xy) on C/k. Let
us now decompose C/k as ring, we have

C ∼= B/pB ∼=
m⊕
i=1

B/qeii

where

pB = qe11 · · · qemm .

If ei > 1, then any element z ∈ C such that z = 0 in every coordinate
but i and has i-th coordinate in qi, has the property that zei = 0.
Furthermore the set of such z forms an ideal. This means TC/k(zx) = 0
for all x ∈ C, by your homework. Thus, the pairing

(x, y) = TC/k(xy)

is degenerate, which means that ∆(B/A) is 0 zero modulo p.
If ei = 1 for every i, then

C ∼= B/q1 ⊕ · · · ⊕B/qm.
The trace form (x, y) = TC/k(xy) decomposes into a sum of forms

(a, b) = T(B/qi)/k(ab).

Now, (a, b) = T(B/qi)/k(ab) is nondegenerate if and only if B/qi is
separable over k. Since a direct sum of forms is nondegenerate if and
only if each form is nondegenerate, our proof is complete. �

Here is a simple and easy to prove fact comparing the discriminants
of different subrings B and B′ of L

Proposition 13.6. Let B′ ⊂ B where B and B′ are as usual (we will
usually take B to the be the integral closure of A in L). Suppose that B
has a basis v1, . . . , vn as an A-module and that B′ has a basis w1, . . . , wn

as an A-module. Writing

wi =
n∑

`=1

ni`a`,

and letting N be the matrix [ni`], we have

(1) det[TL/K(wiwj)] = (detN)2 det[TL/K(vivj)].
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Proof. Now,

TL/K(wiwj) =
n∑

`=1

n∑
k=1

ni`njk TL/K(vivj).

A bit of linear algebra shows that this is exactly the same as the ij-th
coordinate of the matrix N tMN where M = [TL/K(vivj)]. Equation 1
follows. I gave an easier explanation on the board. �


