Math 430
Notes from Class 10/9

Definition 13.1. The discriminant A(B’/A) is defined to be ideal

generated by the determinants of all matrices M = [Tp/x(w;w;)] as
wy, ..., w, range over all bases for L consisting of elements contained
in B'.

Example 13.2. The reason that we need to talk about the discrimi-
nant relative to A is that B’ could be defined over two different Dedekind
domains. For example, we could take B’ = Z[v/3,+/7] which is an ex-
tension of Z as well as of Z[v/3] and Z[+/7]. The various discriminants
A(B'/Z), A(B'JZ[\/3]), and A(B'/Z[\/T]) may all be different.

One nice fact about discriminants is that they can be computed
locally. We have the following.

Proposition 13.3. With notation as throughout lecture, let S be a
multiplicative subset of A not containing 0. Then

STTAA(B'JA) = A(ST'B'/STA).

Proof. Since any basis with elements in B’ is also in S~1B’, it is obvious
that
STTAA(B'JA) C A(ST'B'/STTA).

Similarly, given a basis vy,...,v, for L/K contained in S™'B’, see
that the basis wq,...,w, where w; = sv; is contained in B’ for some
s € S. Now

det(Tr/x (wsw;)) = " det(Tr K (vivy))),
so STTAA(B'JA) D A(ST'B'/STtA). O

We know that A(B’/A) is an ideal I. If [ = H pt, then A, I = p7",

so to figure out what A(B’/A) is, all we have to do is figure out what
A(STIB'/S7TA) is for S = A\ p.

The trace also behaves well with respect to reduction. Recall that
whenever we have a finite integral extension of a field, we can de-
fine a trace. We’ll apply that with the field £ = A/p for a maximal
ideal p of A. Since this computation is local, we will work over A,
(which is a DVR). This is just for simplicity, since we have B'/pB’ =
SIB'/S™1B'p, so it isn’t hard to see that the local computation gives
the computation over A.

Lemma 13.4. Let A and B’ be as usual. Let p be a maximal prime of
A letk=A/p, let S=A\p, and let ¢ : ST'B' — S™'B'/S™'B'p be
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the usual quotient map. Let us denote S™*B'/S™B'p as C. Then for
anyy € ST'B', we have ¢(T1k(y)) = Tom(d(y)).

Proof. Note that since S™'B’ is in S™!B, which is Noetherian, we see
that S~'B’ is a finitely generated Ap,-module. Thus, it is a free Ay,-
module (since A, is a DVR and thus a PID) of rank [L : K], so dim C =
L : K| =n. Let wy,...,w, be a basis for C' over k and pick w; € B’
such that ¢(w;) = w;. Since the w; are linearly independent, the w;
must be as well. To see this, suppose that > a;w; = 0 for a; € S™'B’

i=1
(remember that everything in L is z/a for x € B’ and a € A). By

dividing through by a power of a generator m for A,p, we can assume

that not all of the a; are in S™' B’p. This means then that >_ ¢(a;)w; =
i=1

0, with some ¢(a;) # 0, which is impossible. Now, we are essentially

done, since we can define the trace of any y € B’ with respect to this

basis. We have .
Yyw; = Z mijwj
j=1
with my; € A, and
Sy)w; = > d(my;)w;.
j=1

Hence,
n

o(Tr/k(y)) = Z d(mii) = Tepm(d(y)).
i=1
0
When B is the integral closure of A in L, and p is maximal in A, we
can write
pB=dai'---q,"
If e; > 1 for some 7, then we say that p ramifies in B. When B = Ala],
we know that p ramifies in B if and only if A(B/A) C p. That is true
more generally.

Theorem 13.5. Let B be the integral closure of A in L and let p be
mazximal in A. Then A(B/A) C p if and only if p ramifies in B or
B/q is inseparable over A/y for some prime q such that g A = p.

Proof. Tt will suffice to prove this locally, that is to say, it will suffice
to replace A with A, and B with S™'B where S = A\ p. As in the
previous Lemma, we write k = A/p and C = B/pB and let

¢: B — B/pB
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Also, as in that Lemma let wq, ..., w, be a basis for C over k and pick
w; € B such that ¢(w;) = w;. It is clear then that
Aywy + ... Ayw, + pB = B,

so by Nakayama’s Lemma, the w; generate B as an A, module. From
the Lemma above we have 17k (wsw;) = Te/p(ww;), so the matrix
M = [T¢j,(w;w;)] represents the form (x,y) = Teyp(zy) on C/k. Let
us now decompose C'/k as ring, we have

C= B/pB = B/d;
=1

where

pE = a7
If ¢; > 1, then any element z € C such that z = 0 in every coordinate
but ¢+ and has i-th coordinate in q;, has the property that 2% = 0.
Furthermore the set of such 2z forms an ideal. This means T¢/;(22) = 0
for all x € C', by your homework. Thus, the pairing

(@, y) = Tem(zy)

is degenerate, which means that A(B/A) is 0 zero modulo p.
If e; = 1 for every i, then

C=B/q1 @ ®B/tn.
The trace form (z,y) = Teyr(2y) decomposes into a sum of forms
(a,0) = T(B/q,/x(ab).

Now, (a,b) = T(p/q,)/x(ab) is nondegenerate if and only if B/q; is
separable over k. Since a direct sum of forms is nondegenerate if and
only if each form is nondegenerate, our proof is complete. O

Here is a simple and easy to prove fact comparing the discriminants
of different subrings B and B’ of L

Proposition 13.6. Let B’ C B where B and B’ are as usual (we will
usually take B to the be the integral closure of A in L). Suppose that B
has a basis vy, . .., v, as an A-module and that B’ has a basis wy, . .., w,
as an A-module. Writing

n
w; = E NipQy,
=1

and letting N be the matriz [ny], we have

(1) det[TL/K(wzwj)] = (det N)2 det[TL/K(Uﬂ)j)].
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Proof. Now,

Tryrc(wiw;) =Y > nmgnj Toyc(vivy).
=1 k=1
A bit of linear algebra shows that this is exactly the same as the ij-th
coordinate of the matrix N*A/N where M = [Tk (v;v;)]. Equation
follows. I gave an easier explanation on the board. U



