
Math 430
Notes from Class 10/7

We will use the following (proof done earlier) to calculate
rings of integers.

Recall that the discriminant of a monic polynomial h with roots
α1, . . . , αn (with multiplicity) is defined to be

∆(h) =
∏
i<j

(αi − αj)
2.

What happens when we reduce a polynomial modulo a maximal ideal
p in a Dedekind domain A.

Proposition 12.1. Let F be a monic polynomial in a Dedekind domain
A. Let p be a prime of A and let F̄ be the reduction of F mod p. Let F̄
be the reduction of F modulo p and let ∆(F ) be the reduction of ∆(F )
modulo p. Then, we have ∆(F ) = ∆(F̄ ).

Proof. Let F =
∏n

i=1(X − αi) where the αi. Let B = A[α1, · · · , αn].
Then there is a maximal q in B such that q∩A = p. Let φ : B −→ B/q.
Let h ∈ (B/q)[X] be the polynomial

∏m
i=1(X − φ(αi)). Now, the

i − i-th coefficient of h(x) is (−1)iSi(φ(α1), . . . , φ(αn)) where Si+1 is
the i + 1-st elelementary symmetric polynomial in n-variables. Since
φ is homomorphism, (−1)−iSi(φ(α1), . . . , φ(αn)) is also the n − i-th
coefficient of F̄ , so F̄ = h and it is clear that

∆(h) = (−1)n(n−1)/2
∏
i 6=j

(φ(αi)− φ(αj)) =
∏
i<j

(φ(αi)− φ(αj))
2 = ∆(F ).

�

This has the following corollary for monic polynomials F over Dedekind
domains.

Corollary 12.2. Let A be a Dedekind domain with field of fractions
K and let p be a maximal prime in A. Then the reduction F̄ of F
modulo p has distinct roots in the algebraic closure of A/p if and only
if ∆(F ) /∈ p.

It is easy to see that ∆(F ) ∈ K. To see this, note that if the roots
of F are distinct, then K(α1, . . . , αn) is Galois over K and

∏
i 6=j

(αi−αj)

is certainly invariant under the Galois group of K(α1, . . . , αn) over K.
It follows that ∆(F ) ∈ K. To see this, note that if the roots of F
are distinct, then K(α1, . . . , αn) is Galois over K and

∏
i 6=j

(αi − αj) is

certainly invariant under the Galois group of K(α1, . . . , αn) over K.
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Here are some other, often easier ways of writing the discriminant...
Let F be monic over K. Then

∆(F ) = (−1)n(n−1)/2
n∏

i=1

F ′(αi).

This is quite easy to see, since if F (X) =
n∏

i=1

(X − αi), then by the

product rule, F ′(X) =
m∑
i=1

∏
i 6=j

(αi − αj), so F ′(αi) =
∏
j 6=i

(αi − αj) and

n∏
i=1

F ′(αi) =
∏
i 6=j

(αi − αj).

When F is monic and irreducible with and L = K(α) is separable
for a root α of F , this yields

∆(F ) = (−1)n(n−1)/2 NL/K(F ′(α)).

Since F ′ has coefficients in K, we see that if α1, . . . , αn are the conju-

gates of α, then NL/K(F ′(α)) =
m∏
i=1

F ′(αi) and we are done.

Let’s do some more examples of Dedekind domains today. We’ll start
with Q( 3

√
5), which we will show is Dedekind. First of all, we’ll calculate

the discriminant of Z[ 3
√

5]. We see that the minimal polynomial of 3
√

5
is F (X) = X3 − 5, which has derivative 3X2, so

∆(F ) = NQ( 3√5)/Q(F ′(
3
√

5)) = NQ( 3√5)/Q(3
3
√

5
2
) = 3352,

so we know that any non-invertible primes must lie over 3 or 5, since
a prime (Q, gi( 3

√
5)) can fail to be invertible if and only if g2 | F

(mod pZ) where Q∩ Z = pZ.
Let’s factor over 5 and see what happens... We get X3 − 5 ≡ X3

(mod 5), so we get the prime ( 3
√

5, 5) which is certainly generated by
3
√

5 and hence is principal and thus invertible. Over 3, things are a bit
more complicated. We factor as X3−5 ≡ (X−5)3 (mod 3), so we have
the ideal ( 3

√
5− 5, 3), which we denote as Q. How can we tell whether

or not this is locally principal? One way is by using the remainder
term as mentioned before. When we divide (X − 5) into X3− 5 we get
a remainder of 53 − 5 = 120, which is not divisible by 9. So the prime
( 3
√

5− 5, 3) is invertible.
Here’s another explanation with norms.
One way to check if an integer n is in the ideal generated by an ele-

ment β in an integral extension ring is to see if n is the ideal generated
by the norm of β. Let’s apply this idea to the above we see that

NQ( 3√5)/Q(
3
√

5−5) = (1− 3
√

5)(1+
3
√

5+
3
√

5
2
) = 5−125 = −120 = (−40)·3.
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Since −40 is unit in Z[ 3
√

5]Q, it follows that

Z[
3
√

5]Q(
3
√

5− 5) = Z[
3
√

5]QQ,

so Q is locally principal, as desired. Thus, we see that Z[ 3
√

5] is a
Dedekind domain as desired.

What about Z[ 3
√

19]? Calculating the discriminant yields 33 · 192.
Again, it is easy to see that the prime lying over 19 is just 3

√
19. But the

prime lying over 3 is trickier. We see that the only prime Q ∈ Z[ 3
√

19]
such that Q ∩ Z = 3Z is the prime ( 3

√
19− 19, 3). Modulo 3 we have

(X − 19)3 = X − 19 (mod 3).

From some work from last time, ( 3
√

19− 19, 3) is invertible if and only
if the remainder of X3 − 19 modulo X − 19 is divisble by 32. We see
that

(X3 − 19) = (X − 19)(X2 + 19X + 192) + 193 − 19.

Since

193 − 19 ≡ −18 (mod 9) ≡ 0 (mod 19)

we see that ( 3
√

19− 19, 3) is not invertible.
In fact, we can generalize this to show that if a is a square-free integer

and p is a prime, then Z[ p
√
a] is Dedekind if and only if ap − a 6≡ 0

(mod p2). This will be on your homework.
For an element α /∈ A that is integral over A, we define the discrim-

inant ∆(α/A) to be ∆(F ) where F is the minimal monic for α over A.
We also define the discriminant ∆(A[α]) to be ∆(A[α]).

Given a Dedekind domain A with field of fractions K and a finite
separable extension L of K of degree n we want to be able to define a
discriminant ∆(B′/A) of any subring B′ of L. This will involve working
with a basis for L over K that consists entirely of elements contained
in B′

A bit more on subrings of the integral closure.

Proposition 12.3. Let A be an integral domain with field of fractions
K and let L be a finite extension of K. Suppose that B′ ⊂ L has field
of fractions L and is integral over A. Then, for every element y ∈ L
there exists a ∈ A such that ay ∈ B′.

Proof. Let y = α/β for α, β ∈ B′ with α, β 6= 0. We will show that
α/β = b/a for b ∈ B′ and a ∈ A. We know that the ideal B′β has
nonzero intersection with A by taking the constant term of the minimal
monic polynomial for β over A. Thus, we can write γβ = a for some
nonzero a ∈ A. Then 1/β = γ/a, so α/β = αγ/a and we are done,
since this means that a(α/β) ∈ B′. �



4

For the rest of class, A is Dedekind with field of fractions K, the field
L is a finite separable extension of K of degree n, and B′ is a subring of
L that is integral over A. We will also assume that for every maximal
ideal p of A, the residue field A/p is perfect.

We’ll begin with a definition that works when B′ is a free A-module,
i.e. when B′ is isomorphic as an A-module to An, where n = [L : K].
In this case, we choose a basis w1, . . . , wn for B′ over A and we let M
be the matrix [mij] where mij = TL/K(wiwj). Then we define

(1) ∆(B′) = detM.

How do we know that this agrees with our earlier definition in the case
B′ = A[α]? In fact, it more or less follows from some earlier work we
did. Recall that in this case, we can choose the basis 1, α, . . . , αn−1, so
that [mij] = [TL/K(αi+j−2)], which we recall is equal to

n∑
`=1

αi+j−2
` .

As we saw earlier, letting N be the van der Monde matrix
1 · · · 1
α1 · · · αn

· · · · · · · · ·
αn−1
1 · · · αn−1

n

 ,

we have NN t = M , so

detM = (detN)2 =
∏
i<j

(αi − αj)
2,

which is the same as ∆(α), so our definitions agree.
Not all B′ will be free A-modules, however, so we have the more

general definition below.

Definition 12.4. With notation as above ∆(B′/A) is defined to be
ideal generated by the determinants of all matrices M = [TL/K(wiwj)]
as w1, . . . , wn range over all bases for L consisting of elements contained
in B′.


