
Math 430
Notes from Class 10/02

More on factoring primes in extensions. Remember we can only do
this well for separable extensions.

Let’s begin with the following Lemma, the proof of which is obvious.

Lemma 11.1. Let I be an ideal in Dedekind domain. Write

I = qe11 · · · qemm
where the qi are distinct primes. Then

ei = min{m | Rqi(qi)
m ⊆ RqiI}.

Proposition 11.2. Let A be Dedekind. Let p be a maximal ideal of A
and let α be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for α over
A and that the reduction mod p of G, which we call Ḡ factors as

Ḡ = ḡr11 · · · ḡrmm ,

with the ḡi distinct, irreducible, and monic. Then choosing monic gi ∈
A[x] such that gi ≡ ḡi (mod p), we have

(1) qi = A[α](gi(α), p) is a prime for each i; and
(2) ri is the smallest positive integer such that

Rqi(qi)
ri ⊆ Rqip.

Proof. The proof is quite simple. Note that A[α] is isomorphic to
A[x]/G(x). We work in the ring A[α]/pA[α] ∼= A[x]/(G(x), p), which
is isomorphic to

(A/p)/(Ḡ(x)) ∼=
m∑
i=1

(A/p)[x]/ḡi(x)
ri .

Since ḡi(x) is irreducible in (A/p)[x]), we see that

(A/p)[x]/ḡi(x)

is a field, so qi is prime ideal since

A[α]/qi ∼= (A/p)[x]/ḡi(x).

Now,

A[α]qi/A[α]qip
∼= (A/p)[x]/ḡi(x)

ri ,

so ri is the smallest integer such that

gi(x)
ri ⊆ Rqip.

□
1
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Corollary 11.3. (Kummer) With notation as above, if A[α] is Dedekind,
then

A[α]p = qe11 · · · qemm .

Proof. Immediate from the lemma and proposition above. □

We will also want to deal with rings that are not Dedekind domains.
Frequently, we will want to take rings of the form A[α] and try to decide
whether or not they are in fact Dedekind. Here’s a useful fact.

Proposition 11.4. With notation as above, if ri = 1 then the prime
A[α](p, gi(α)) is invertible.

Proof. For each j, select a monic polynomial gj ∈ A[x] such that gj ≡ gj
(mod p). Since

g1(x)
r1 · · · gm(x)rm ≡ f(x) (mod p)

it is clear that

(1) g1(α)
r1 · · · gm(α)rm ∈ p,

since α is a root of f . Furthermore, we know that for j ̸= i, we must
have that gi(α) and gj(α) are coprime. Now, suppose that ri = 1 for
some i; let qi = A[α](gi(α), p). When we localize at qi, all of the gj(α)
for which j ̸= i become units. Thus, (1) has the form gi(α)u ∈ p for u
a unit, so gi(α) ⊂ A[α]p. We know that there exists a π ∈ A such that
Ap = Apπ since p is invertible in A. Then

A[α]qi(gi(α), p) = A[x]qiπ

so qi is invertible. □

Note: In fact, it is possible to prove the following though the proof
is more difficult.

Proposition 11.5. With notation as above, if ri = 1 then the prime
A[α](p, gi(α)) is invertible. If ri > 1, then qi is invertible if and only if
all the coefficients of the remainder mod gi of G are not all in p2, i.e.
if writing

G(x) = q(x)gi(x) + r(x),

we have r(x) /∈ p2[x].

Example 11.6. Let d be a square-free odd integer and letK = Q(
√
d).

We know that Z[sqrtd] is a Dedekind domain if and only if d is con-
gruent to 1 mod 4. Then x2 − d factors as (x− 2)2 modulo 2. To see if
the prime (2, x−2) is invertible we divide x−2 into (x−2)2. We get a
remainder of d2−d, which is divisible by 22 exactly when d is congruent
to 1 modulo 4. So the prime above 2 is not invertible in this case. It
is not hard to see that all other primes in Z[sqrtd] are invertible
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How can we tell which primes we have to worry about (by this, I
mean those for which some ri is greater than 1)? We can use something
called the discriminant of a finitely generated integral extension of rings
B over A. We will work with several formulations, all of which are
equivalent. Here’s the definition of the discriminant of a polynomial.

Definition 11.7. Let K be a field and let F be the monic polynomial

F (x) = xn + an−1x
n−1 + · · ·+ a0.

Then, writing

F (x) =
n∏

i=1

(x− αi)

where αi are the roots of F in some algebraic closure of K, the dis-
criminant ∆(F ) is defined to be

∆(F ) = (−1)n(n−1)/2
∏
i ̸=j

(αi − αj) =
∏
i<j

(αi − αj)
2.

Why is this discriminant useful? Because of the following obvious
fact:

∆(F ) ̸= 0 ⇔ F does not have multiple roots.


