Math 430 Tom Tucker
NOTES FROM CLASS 9/25

Theorem 9.1. Let L O K be a finite extension of fields. Then the
bilinear form (x,y) = Trk(xy) is nondegenerate < L is separable
over K.

Proof. (=) Follows immediately from the above.

(<) We will denote T,k (xy) as (z,y). Recall the following: Choos-
ing a basis my,...,m, and writing x and y as vectors in terms of the
m; We can write

xAy T

for some matrix A. The matrix A is given by [a;;] where a;; = (m;, m;)

since we want
(D_ma D sia) = > D risi(aia;).
i=1 j=1 i=1 j=1

It is easy to see that that the form will be nondegenerate if and only if
A is invertible, since Ay = 0 if and only (z,y) = 0 for every y € L.

Now, since L is separable over K, we can write L = K(0) for € L
and use 1,0,...,0" ! as a basis for L over K. Then we can write the
matrix A = [a;;] above with

Ai5 = (Qi_l,ﬁj_l) = TL/K(0i+j_2).

It isn’t too hard to calculate these coefficients explicitly. In fact, if
01, ...,0, are the roots of the minimal polynomial of #, then

Tyk(0) => 0,
=1

from what we proved earlier. Similarly, we have

T = 30
=1
There is a trick to finding the determinant of such a matrix. Recall the
van der Monde matrix in V := V(6y,...,0,). It is the matrix

1 1
0, --- 0,
oy 0,

The determinant of this matrix is

det(V) = [ J(6: - 6;).
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It is easy to check that VVT = A (a messy but easy calculation). Thus,

2
det(A) = det(V) det(VT) = det(V)? = (H(ei - @)) 0,
i>j
since ¢; # 0; for ¢ # j and we are done.
O

Now, given a bilinear from (x, %) on a vector space W, we get a map
from ¢ : W — W*, where W* is the dual of W by sending z € W
to the map f(y) = (x,y). When the form is nondegenerate this map is
injective. Thus, by dimension counting, when W is finite dimensional
and the form is nondegenerate, we get an isomorphism of vector spaces.
In particular, we can do the following. Let uq,...,u, be a basis for W
over V. Then for each u;, there is a map f; € W* such that f;(u;) = d;;
where 9;; is the Kronecker delta, which means that ¢;; = 0 if ¢ # j and
0;; = 1if ¢ = j. Since f;(xz) = (v, ) for some v; € W, we obtain a
dual basis vy, ..., v, with the property that

(Ui, 'LL]') = 6”
Thus, we have the following.

Theorem 9.2. (Dual basis theorem) Let L O K be a finite, separable
extension of fields. Let uq,...,u, be basis for L as a K-vector space.
Then there is a basis vy, ...,v, for L as a K-vector space such that

TL/K<U1', Uj) = 51]

Proof. Since (z,y) = Ty /k(xy) is a nondegenerate bilinear form on L
(considered as a K-vector space), we may apply the discussion above.
O

Definition 9.3. Let L O K be a separable field extension. Let M be
a submodule of L. We define M7 to be set

{xeL | Tyk(xy) € Afor every y € M}

Remark 9.4. Tt is clear that M C N = MT D NT, by definition of the
dual module.

Lemma 9.5. Let M be an A-submodule of L for which
M = Auy + - - - + Auy,

forui, ..., u, abasis for L over K. Then M is equal to Avi+- - -+ Av,
foruvy, ... v, a dual basis for uy, ..., u, with respect to the bilinear form
induced by the trace.
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Proof. Let « € L. Then € M if and only if 11k (2u;) € A for each
;. Writing x as Z a;v; with o € K, we see that Ty /x (vu;) = a;, so
Trk(2u;) € Aif and only if o; € A. This completes our proof. O

Theorem 9.6. Let A be a Dedekind domain with field of fractions K
and let L O K be a finite, separable extension of fields. Let B be the
integral closure of A in L. Then B is Dedekind.

Proof. We already know that B is 1-dimensional, integrally closed, and
an integral domain. We need only show that it is Noetherian.

Then B C B since B is integral over A (recall B integral over A
means that the coefficients of the minimal polynomial for B over A are
all in A). Now, we choose a basis uy, ..., u, for L over K. I claim that
we can choose the u; to be in B. This is because for any u € L we have

Ty x
1m1_|_..._|__0:0
Ym—1 Yo

u™ +

with x; and y; in A. Replacing v with /' = []y; and multiplying
i=1

through by (H y;)™ converts this into an integral monic equation in u’
as we've seen before Thus, we can take our basis u;, replace each u;
with a multiple of u; and stlll have a basis. Let v,...,v, be a dual

basis for uq, ..., u, with respect to the trace form. Then the A-module
generated by the v; contains Bf. So we have

BC B'D Av, + -+ + Av,

which implies that B is contained in a finitely generated A-module,
which in turn implies that B is Noetherian as an A-module. Hence, B
is Noetherian as a B-module and is a Noetherian ring. U

One more thing. We don’t need this but I thought it might be nice to
give the most general form of a theorem about how prime ideals behave
in integral extensions. Note this doesn’t even require Noetherian.

Proposition 9.7. Let A be a domain, A # 0, and let B be integral
over A. Then for any prime p of A, we have Bp # B.

Proof. Suppose that Bp = 1. Then there are by,...,b,, € B and
1, ..., T, € P such that such that

b11}1++bm$m:1

Let C = Aby + --- + Ab,,. Then C is finitely generated as an A-
module and pC' = C. Let N = A,C; then N is finitely generated and
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AppN = N. Since A, is local, we must have N = 0 by Nakayama’s
lemma, which gives a contradiction, since A # 0. 0

We will be interested in factorizing pB for primes p in a Dedekind
domain and B the integral closure of A in a finite extension of the field
of fractions of A.

For example, in Z][i], we have that 3Z[i] is prime and 5Z[i] factors as
a product of two primes.



