Math 430 Tom Tucker NOTES FROM CLASS 9/25

Theorem 9.1. Let $L \supseteq K$ be a finite extension of fields. Then the bilinear form $(x, y) = T_{L/K}(xy)$ is nondegenerate \Leftrightarrow L is separable over K.

Proof. (\Rightarrow) Follows immediately from the above.

(\Leftarrow) We will denote $T_{L/K}(xy)$ as (x, y) . Recall the following: Choosing a basis m_1, \ldots, m_n and writing x and y as vectors in terms of the m_i we can write

$$
\mathbf{x} A \mathbf{y}^T
$$

for some matrix A. The matrix A is given by $[a_{ij}]$ where $a_{ij} = (m_i, m_j)$ since we want

$$
\left(\sum_{i=1}^{n} r_i a_i, \sum_{j=1}^{n} s_j a_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} r_i s_j (a_i, a_j).
$$

It is easy to see that that the form will be nondegenerate if and only if A is invertible, since A **y** = 0 if and only $(x, y) = 0$ for every $y \in L$.

Now, since L is separable over K, we can write $L = K(\theta)$ for $\theta \in L$ and use $1, \theta, \ldots, \theta^{n-1}$ as a basis for L over K. Then we can write the matrix $A = [a_{ij}]$ above with

$$
a_{ij} = (\theta^{i-1}, \theta^{j-1}) = T_{L/K}(\theta^{i+j-2}).
$$

It isn't too hard to calculate these coefficients explicitly. In fact, if $\theta_1, \ldots, \theta_n$ are the roots of the minimal polynomial of θ , then

$$
\mathrm{T}_{L/K}(\theta) = \sum_{\ell=1}^n \theta_\ell,
$$

from what we proved earlier. Similarly, we have

$$
T_{L/K}(\theta^{i+j-2}) = \sum_{\ell=1}^n \theta_\ell^{i+j-2}.
$$

There is a trick to finding the determinant of such a matrix. Recall the van der Monde matrix in $V := V(\theta_1, \ldots, \theta_n)$. It is the matrix

$$
\left(\begin{array}{cccc} 1 & \cdots & 1 \\ \theta_1 & \cdots & \theta_n \\ \cdots & \cdots & \cdots \\ \theta_1^n & \cdots & \theta_n^n \end{array}\right)
$$

The determinant of this matrix is

$$
\det(V) = \prod_{i < j} (\theta_i - \theta_j).
$$

It is easy to check that $VV^T = A$ (a messy but easy calculation). Thus,

$$
\det(A) = \det(V) \det(V^T) = \det(V)^2 = \left(\prod_{i>j} (\theta_i - \theta_j)\right)^2 \neq 0,
$$

since $\theta_i \neq \theta_j$ for $i \neq j$ and we are done.

□

Now, given a bilinear from (x, y) on a vector space W, we get a map from $\psi: W \longrightarrow W^*$, where W^* is the dual of W by sending $x \in W$ to the map $f(y) = (x, y)$. When the form is nondegenerate this map is injective. Thus, by dimension counting, when W is finite dimensional and the form is nondegenerate, we get an isomorphism of vector spaces. In particular, we can do the following. Let u_1, \ldots, u_n be a basis for W over V. Then for each u_i , there is a map $f_i \in W^*$ such that $f_i(u_j) = \delta_{ij}$ where δ_{ij} is the Kronecker delta, which means that $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if $i = j$. Since $f_i(x) = (v_j, x)$ for some $v_j \in W$, we obtain a dual basis v_1, \ldots, v_n with the property that

$$
(v_i, u_j) = \delta_{ij}.
$$

Thus, we have the following.

Theorem 9.2. (Dual basis theorem) Let $L \supseteq K$ be a finite, separable extension of fields. Let u_1, \ldots, u_n be basis for L as a K-vector space. Then there is a basis v_1, \ldots, v_n for L as a K-vector space such that

$$
T_{L/K}(v_i, u_j) = \delta_{ij}.
$$

Proof. Since $(x, y) = T_{L/K}(xy)$ is a nondegenerate bilinear form on L (considered as a K-vector space), we may apply the discussion above. □

Definition 9.3. Let $L \supseteq K$ be a separable field extension. Let M be a submodule of L. We define M^{\dagger} to be set

$$
\{x \in L \mid T_{L/K}(xy) \in A \text{ for every } y \in M\}
$$

Remark 9.4. It is clear that $M \subseteq N \Rightarrow M^{\dagger} \supseteq N^{\dagger}$, by definition of the dual module.

Lemma 9.5. Let M be an A-submodule of L for which

$$
M = Au_1 + \cdots + Au_n
$$

for u_1, \ldots, u_n a basis for L over K. Then M^\dagger is equal to $Av_1 + \cdots + Av_n$ for v_1, \ldots, v_n a dual basis for u_1, \ldots, u_n with respect to the bilinear form induced by the trace.

Proof. Let $x \in L$. Then $x \in M^{\dagger}$ if and only if $T_{L/K}(xu_i) \in A$ for each u_i . Writing x as $\sum_{n=1}^{n}$ $i=1$ $\alpha_i v_i$ with $\alpha_i \in K$, we see that $T_{L/K}(x u_i) = \alpha_i$, so $T_{L/K}(xu_i) \in A$ if and only if $\alpha_i \in A$. This completes our proof. \Box

Theorem 9.6. Let A be a Dedekind domain with field of fractions K and let $L \supseteq K$ be a finite, separable extension of fields. Let B be the integral closure of A in L. Then B is Dedekind.

Proof. We already know that B is 1-dimensional, integrally closed, and an integral domain. We need only show that it is Noetherian.

Then $B \subset B^{\dagger}$ since B is integral over A (recall B integral over A means that the coefficients of the minimal polynomial for B over A are all in A). Now, we choose a basis u_1, \ldots, u_n for L over K. I claim that we can choose the u_i to be in B. This is because for any $u \in L$ we have

$$
u^{m} + \frac{x_{m-1}}{y_{m-1}}u^{m-1} + \dots + \frac{x_0}{y_0} = 0
$$

with x_i and y_i in A. Replacing u with $u' = \prod_{i=1}^{m}$ $i=1$ y_i and multiplying through by $\left(\prod^m\right)$ $i=1$ $(y_i)^m$ converts this into an integral monic equation in u' as we've seen before. Thus, we can take our basis u_i , replace each u_i with a multiple of u_i and still have a basis. Let v_1, \ldots, v_n be a dual basis for u_1, \ldots, u_n with respect to the trace form. Then the A-module generated by the v_i contains B^{\dagger} . So we have

$$
B \subseteq B^{\dagger} \supseteq Av_1 + \cdots + Av_n
$$

which implies that B is contained in a finitely generated A -module, which in turn implies that B is Noetherian as an A -module. Hence, B is Noetherian as a B-module and is a Noetherian ring. \Box

One more thing. We don't need this but I thought it might be nice to give the most general form of a theorem about how prime ideals behave in integral extensions. Note this doesn't even require Noetherian.

Proposition 9.7. Let A be a domain, $A \neq 0$, and let B be integral over A. Then for any prime \mathfrak{p} of A, we have $B\mathfrak{p} \neq B$.

Proof. Suppose that $B\mathfrak{p} = 1$. Then there are $b_1, \ldots, b_m \in B$ and $x_1, \ldots, x_m \in \mathfrak{p}$ such that such that

$$
b_1x_1+\cdots+b_mx_m=1.
$$

Let $C = Ab_1 + \cdots + Ab_m$. Then C is finitely generated as an Amodule and $\mathfrak{p}C = C$. Let $N = A_{\mathfrak{p}}C$; then N is finitely generated and

 $A_{\mathfrak{p}} \mathfrak{p} N = N$. Since $A_{\mathfrak{p}}$ is local, we must have $N = 0$ by Nakayama's lemma, which gives a contradiction, since $A \neq 0$. \Box

We will be interested in factorizing pB for primes p in a Dedekind domain and B the integral closure of A in a finite extension of the field of fractions of A.

For example, in $\mathbbm{Z}[i],$ we have that $3\mathbbm{Z}[i]$ is prime and $5\mathbbm{Z}[i]$ factors as a product of two primes.