
Math 430 Tom Tucker
NOTES FROM CLASS 9/23

Corollary 8.1. Let A be a Noetherian ring and let B ⊇ A be finitely
generated as an A-module. Then B is a Noetherian ring.

Proof. By the corollary above, B is a Noetherian A-module, so every
ideal of B is finitely generated as an A-module, hence also as a B-
module. □

We will start proving the following.

Theorem 8.2. Let A be a Dedekind domain with field of fractions K.
Let L be a finite separable extension of A. Then the integral closure B
of A in L is a Dedekind domain.

From some work we’ve done, all we’ll have to do is show that B is
contained in a finitely generated A-module. We’ll use something called
a dual basis, the existence of which is proven using the separable basis
theorem. All we need to do is show it is Noetherian. We will prove
this using the separable basis theorem (next time).

What’s the problem in general then for showing that OL is Dedekind
for L a number field? The big problem is showing that it isOL is finitely
generated as a Z-module.

Definition 8.3. We say that M a is Noetherian R-module if for any
ascending chain of R-submodules

M0 ⊆ M1 ⊆ · · · ⊆ Mn ⊆ . . .

there is an N such that Mi = Mj for all i, j ≥ N .

Here is the basic set-up for today. Let L be a finite algebraic ex-
tension of degree n over K. Since L is a vector space over K and
multiplication by an element x in L preserves the K-structure of L, we
see that

rx : z 7→ xz

is a K-linear invertible map from L to L. Given a basis m1, . . . ,mn for
L over K, we can write

rxmi =
n∑

i=1

aijmj
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for m1, . . . ,mn. We have the usual definitions for the norm and trace
of rx below

TL/K(x) := TL/K(rx) =
n∑

i=1

aii

NL/K(x) := NL/K(rx) = det([aij]).

In other words, if rx gives the matrix M , then the trace is the sum
of the diagonal elements and the norm is the product of the diagonal
elements. It turns out that this definition doesn’t depend on the choice
of basis. This is a standard fact from linear algebra. It follows from
the fact that for any matrix n× n M and any invertible n× n matrix
U , we have

TL/K(M) = TL/K(UMU−1)

and
NL/K(M) = NL/K(UMU−1).

You may recall in fact that the characteristic polynomial det(λI −
[aij]) of a matrix is invariant under conjugation, and that by putting a
matrix into upper-triangular form [aij], the norm NL/K(M) is (−1)n

times the constant term of the characteristic polynomial and that
TL/K(M) is −1 times the the coefficient of λn−1. Recall that by Cayley-
Hamilton each b ∈ L must satisfy its own characteristic polynomial
P (λ) = 0 where P (λ) = det(λI − [aij]). Thus, when L = K(b), the
polynomial P (λ) has the same degree as the minimal polynomial for b
over K and must therefore be the minimal monic polynomial for b over
K. This gives us an easy definition of the trace and norm in terms of
the minimal polynomial for b over K. Suppose that the minimal monic
for b over K is given by

f(b) = bn + an−1b
n−1 + · · ·+ a0 = 0.

Then
TK(b)/K(b) = −an−1 =

∑
bi

−bi

and
NK(b)/K(b) = (−1)na0 = (−1)n

∏
bi

bi,

where the bi are the conjugates of bi in an algebraic closure of K.
Let (·, ·) be the bilinear pairing given by (a, b) = TL/K(ab) for a, b ∈

L. It is easy to see that this is a K-bilinear pairing. We’ll work towards
showing the following.

Theorem 8.4. The trace pairing given above is nondegenerate if and
only if L is separable over K.
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Let’s also keep in mind that we can always put a polynomial in
upper-triangular or even Jordan canonical form when working with
the norm and the trace. Here are some basic properties of norm and
trace, most of which are elementary. Let’s remember as well that every
element x ∈ L will satisfy the characteristic polynomial of the matrix
rx (multiplication by x).

when L = K(x), we have

NL/K(x) = (−1)na0

and

TL/K(x) = −an−1

where

F (T ) = T n + an−1T
n−1 + · · ·+ a0

is a polynomial of minimal degree for x over K. This follows from the
Cayley-Hamilton theorem, which says that F (T ) must be the charac-
teristic polynomial for the matrix coming from the linear map

rx : a −→ xa

on L.

Proposition 8.5. Let L be a finite dimensional extension of a field K
and let x, y ∈ L and a ∈ K. Then:

(1) TL/K(x+ y) = TL/K(x) + TL/K(y);
(2) TL/K(ax) = aTL/K(x);
(3) NL/K(xy) = NL/K(x)NL/K(y);

(4) NL/K(ax) = a[L:K] NL/K(x);
(5) TL/K(a) = [L : K]a;
(6) Let E be a subfield of L containing K, i.e. K ⊆ E ⊆ L. Then

TL/K(x) = TE/K

(
TL/E(x)

)
.

Proof. It is obvious that the trace is additive and we know from linear
algebra that the determinant is multiplicative. Moreover rxy = rxry
and rx + ry = rx+y. Properties 1-5 are obvious from this plus the
definition of the norm and trace (in the case of norm, remember we
can suppose we are in upper triangular form).

To prove property 6, let a1, . . . , am be a basis for E over K and let
b1, . . . , bn be a basis for L over E. Then the aℓbk form a basis for L/K.
We write

xbi =
n∑

j=1

βij(x)bj
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where βij(x) ∈ E (we treat βij as a function in x). Similarly for any
y ∈ E, we write

yak =
m∑
ℓ=1

αkℓ(y)aℓ.

Now, TL/E(x) =
n∑

i=1

βii(x) and TE/K(y) =
m∑
k=1

αkk(y). Thus,

TE/K(TL/K(x)) =
n∑

i=1

m∑
k=1

αkk(βii(x)).

On the other hand, writing

xakbi =
m∑
j=1

n∑
ℓ=1

αkℓ(βij(x))aℓbj,

we see that

TL/K(x) =
n∑

i=1

m∑
k=1

αkk(βii(x)),

so we are done.
□

Proposition 8.6. Let x ∈ L. Let F (T ) = T d + ad−1T
d−1 + · · ·+ a0 be

a polynomial of minimal degree for x over K.

TL/K = [L : K(x)](−ad−1).

Proof. Since TL/K(x)(x) = [L : K(x)]x and

TK(x)/K([L : K(x)]x) = [L : K(x)] TK(x)/K(x) = [L : K(x)](−ad−1),

this follows immediately from transitivity of trace. □

Proposition 8.7. If L is not separable over K, then TL/K is identically
0.

Proof. This follows immediately from the above. If α ∈ Lsep, we have
[L : K(α) is divisible by the characteristic of K. If α ∈ L\Lsep, then α
satisfies a polynomial of the form T pe − γ, which has next to last term
equal to 0, so TL/Lsep(α) = 0. □


