
Math 430 Tom Tucker
NOTES FROM CLASS 09/18/24

There were some questions about the proof of unique factorization
in Dedekind domains. I went over that the beginning, and also here’s
something very similar to get the flavor of these types of arguments.

Theorem 7.1. Suppose that R is Dedekind. Then every ideal in R can
be generated by two elements.

Proof. Let I be an ideal of R and let x ∈ I. Then R/(x) is a direct
sum of rings of the form Rp/Rpp

e. All such rings have only principal
ideal so any ideal of R/(x) is principal. Let φ : R −→ R/(x) and let
φ(y) generate φ(I). Then I = Rx+Ry. □

We make the following definitions

Inv(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = Inv(R)/P(R).

Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of

R are invertible. We’ll also want a few facts about invertible ideals.
A note on definitions: Fractional ideals are not generally always

assume to be finitely generated.
All invertible ideals are automatically finitely generated, though.

Lemma 7.2. Let J be a fractional ideal of an integral domain R. Then
J is invertible ⇔ J is finitely generated and RmJ is an invertible frac-
tional ideal of Rm for every maximal ideal m of R.

Proof. (⇒) Let J be an invertible ideal ideal of R. Then we can write

k∑
i=1

nimi = 1

with ni ∈ (R : J). Since niJ ∈ R for each i, we can write any y ∈ J as∑k
i=1(niy)mi = y, so the mi generate J . Hence, J is finitely generated.

Let m be a maximal ideal of R. Since we can write J(R : J) = R we
must have Rm(J(R : J)) = Rm, so (RmJ)(Rm(R : J)) = Rm, so RmJ is
invertible

(⇐) For any ideal J , we can form J(R : J) ⊆ R (not necessarily equal
to R). This will be an ideal I of R. Let m be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (Rm : RmJ) = Rm(R : J). Hence, we have
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RmJ(R : J) = Rm. Thus the ideal I = J(R : J) is not contained in any
maximal ideal of R. Thus, I = R and J is invertible. □

Theorem 7.3. Let R be a local integral domain. Then R is a DVR ⇔
every nonzero ideal of R is invertible.

Proof. (⇒) If J is a fractional ideal, then xJ ⊂ R for some x ∈ R.
Hence xJ = Ra for some a ∈ R since a DVR is PID. Thus, J = Rax−1.
Clearly (R : J) = Ra−1x and J(R : J) = 1, so J is invertible.

(⇐) Since every nonzero ideal I ⊂ R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal m of R. The
set of ideals I of R that are not a power of m (note: we consider R to
m0, so the unit ideal is considered to be a power of m) has a maximal
element if it is not empty. Then (R : m)I ̸= I since if (R : m)I = I,
then mI = I which means that I = 0 by Nakayama’s Lemma (note
that R must be Noetherian since all fractional ideals are invertible).
Since (R : m)I ⊇ I (since 1 ∈ (R : m)), this means that (R : m)I is
strictly larger than I, and is thus a power of m, so I = (R : m)Im is
also a power of m.

□

Now, we have the global counterpart.

Theorem 7.4. Let R be an integral domain. Then R is a Dedekind
domain ⇔ every fractional ideal of R is invertible.

Proof. (⇒) Let J be a fractional ideal of R. Then, for every maximal
ideal m, it is clear that RmJ is a fractional ideal of Rm. Since Rm is
a DVR, RmJ must be therefore be invertible for every maximal ideal
m. Moreover, J must be finitely generated since there is an x ∈ K for
which xJ is an ideal of R and every ideal of R is finitely generated since
R is Noetherian. Therefore, J must be invertible by a Lemma 7.2.

(⇐) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. So it’s enough to show that Rp is a DVR
for all nozero primes p. Let J be an ideal of Rp and let I = J ∩ R.
Then I is invertible so RpI = J is invertible by Lemma 7.2.. Thus Rp

is a DVR by Theorem 7.3.
□

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
p−1 = (R : p) for maximal p (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).
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Proposition 7.5. Let R be a Dedekind domain. Then every fractional
ideal J of R has a unique factorization as

J =
n∏

i=1

peii

with all the ei ̸= 0.

Proof. To see that J has some factorization as above we note xJ is an
ideal I in R. So if we factor Rx and I and write J = (x)−1I, we have
a factorization. To see that the factorization is unique we write

I = (
n∏

i=1

peii )(
m∏
j=1

q
−fj
j )

with all the ei and fj positive and no qj equal to any pi. Let I =∏m
j=1 q

fj
j Then JI2 is an ideal of R with JI2 = (

∏n
i=1 p

ei
i )(

∏m
j=1 q

fj
j ).

Since I2 has a unique factorization and so does JI2, so must J have a
unique factorization. □

Back to showing that OK is Dedekind. All we need is to do is
show that OK is Noetherian and one-dimensional. For R-modules (R a
ring), it is easy to see that M satisfies the Noetherian ascending chain
condition if and only if every submodule of M is finitely generated (as
an R-module).

Proposition 7.6. Let R be a ring, let M ′ and M ′′ be Noetherian R-
modules and let

0 −→ M ′ −→ M −→ M ′′ −→ 0

be an exact sequence of R-modules. Then M is Noetherian.

Proof. LetN be a submodule ofM . Let a1, . . . , am generateN∩M ′ and
let b1, . . . , bn be elements of N whose image generates in M ′′ generates
the image of N in M ′′. Then a1, . . . , am, b1, . . . , bn generates N . □

Corollary 7.7. Let A be a Noetherian ring and let M be a finitely
generated A-module. Then M is a Noetherian A-module

Proof. We proceed by induction on the number of generators of M as
an A-module. If M has one generator, then it is isomorphic to some
quotient of A, so we’re done. Otherwise, let x1, . . . , xn generate M and
write

0 −→ Rxn −→ M −→ M/(Rxn) −→ 0.

Then M/(Rxn) is generated by the images of x1, . . . , xn−1, so must
be Noetherian by the inductive hypothesis. By the Lemma above, M
must be Noetherian. □


