Math 430 Tom Tucker
NOTES FROM CLASS 09/18/24

There were some questions about the proof of unique factorization
in Dedekind domains. I went over that the beginning, and also here’s
something very similar to get the flavor of these types of arguments.

Theorem 7.1. Suppose that R is Dedekind. Then every ideal in R can
be generated by two elements.

Proof. Let I be an ideal of R and let x € I. Then R/(x) is a direct
sum of rings of the form R,/R,p°. All such rings have only principal
ideal so any ideal of R/(x) is principal. Let ¢ : R — R/(z) and let
©(y) generate p(I). Then I = Rz + Ry. O

We make the following definitions
Inv(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = Inv(R)/P(R).

Pic(R) is called the Picard group of R.

We will show that if R is a DVR, then all of the fractional ideals of
R are invertible. We'll also want a few facts about invertible ideals.

A note on definitions: Fractional ideals are not generally always
assume to be finitely generated.

All invertible ideals are automatically finitely generated, though.

Lemma 7.2. Let J be a fractional ideal of an integral domain R. Then
J is invertible < J s finitely generated and RyJ is an invertible frac-
tional ideal of Ry for every maximal ideal m of R.

Proof. (=) Let J be an invertible ideal ideal of R. Then we can write

k
=1

with n; € (R : J). Since n;J € R for each i, we can write any y € J as
Zle(niy)mi =y, so the m; generate J. Hence, J is finitely generated.
Let m be a maximal ideal of R. Since we can write J(R : J) = R we
must have Ry (J(R : J)) = Ry, 80 (RnJ)(Ru(R : J)) = Ry, s0 RyJ is
invertible

(<) For any ideal J, we can form J(R : J) C R (not necessarily equal
to R). This will be an ideal I of R. Let m be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (Ry, : RynJ) = Rn(R : J). Hence, we have
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Ry J(R:J) = Ry. Thus the ideal I = J(R : J) is not contained in any
maximal ideal of R. Thus, [ = R and J is invertible. U

Theorem 7.3. Let R be a local integral domain. Then R is a DVR <
every nonzero ideal of R is invertible.

Proof. (=) If J is a fractional ideal, then xJ C R for some =z € R.
Hence 2.J = Ra for some a € R since a DVR is PID. Thus, J = Raxz ™.
Clearly (R:J) = Ra 'z and J(R: J) =1, so J is invertible.

(<) Since every nonzero ideal I C R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal m of R. The
set of ideals I of R that are not a power of m (note: we consider R to
m’, so the unit ideal is considered to be a power of m) has a maximal
element if it is not empty. Then (R : m)l # I since if (R : m)I = I,
then m/ = [ which means that I = 0 by Nakayama’s Lemma (note
that R must be Noetherian since all fractional ideals are invertible).
Since (R : m)I D I (since 1 € (R : m)), this means that (R : m)I is
strictly larger than I, and is thus a power of m, so I = (R : m)/m is

also a power of m.
O

Now, we have the global counterpart.

Theorem 7.4. Let R be an integral domain. Then R is a Dedekind
domain < every fractional ideal of R is invertible.

Proof. (=) Let J be a fractional ideal of R. Then, for every maximal
ideal m, it is clear that R,.J is a fractional ideal of R,. Since R, is
a DVR, R,J must be therefore be invertible for every maximal ideal
m. Moreover, J must be finitely generated since there is an = € K for
which zJ is an ideal of R and every ideal of R is finitely generated since
R is Noetherian. Therefore, J must be invertible by a Lemma [7.2]
(<) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. So it’s enough to show that Rz, is a DVR
for all nozero primes p. Let J be an ideal of R, and let I = J N R.
Then I is invertible so R,I = J is invertible by Lemma [7.2]. Thus R,
is a DVR by Theorem
O

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
p~' = (R : p) for maximal p (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).



3

Proposition 7.5. Let R be a Dedekind domain. Then every fractional
ideal J of R has a unique factorization as

J=]]wf
=1

with all the e; # 0.

Proof. To see that J has some factorization as above we note x.J is an
ideal I in R. So if we factor Rz and I and write J = (z)~'I, we have
a factorization. To see that the factorization is unique we write

1= (T

with all the e; and f; positive and no q; equal to any p;. Let I =
H?; qu Then JI? is an ideal of R with JI* = (T[T, pi)(TT" qu).

J Jj=1
Since I? has a unique factorization and so does JI?, so must J have a

unique factorization. O

Back to showing that O is Dedekind. All we need is to do is
show that O is Noetherian and one-dimensional. For R-modules (R a
ring), it is easy to see that M satisfies the Noetherian ascending chain
condition if and only if every submodule of M is finitely generated (as
an R-module).

Proposition 7.6. Let R be a ring, let M’ and M" be Noetherian R-
modules and let

0— M —M-—M"—0
be an exact sequence of R-modules. Then M 1is Noetherian.

Proof. Let N be a submodule of M. Let ay, ..., a,, generate NNM' and
let by, ..., b, be elements of N whose image generates in M” generates
the image of N in M”. Then a4, ..., a,,,b1,...,b, generates V. O

Corollary 7.7. Let A be a Noetherian ring and let M be a finitely
generated A-module. Then M is a Noetherian A-module

Proof. We proceed by induction on the number of generators of M as
an A-module. If M has one generator, then it is isomorphic to some
quotient of A, so we're done. Otherwise, let z1, ..., x, generate M and
write
0 — Rz, — M — M/(Rx,) — 0.

Then M/(Rz,) is generated by the images of zy,...,x,_1, so must
be Noetherian by the inductive hypothesis. By the Lemma above, M
must be Noetherian. 0



