Math 430 Tom Tucker NOTES FROM CLASS 09/18/24

There were some questions about the proof of unique factorization in Dedekind domains. I went over that the beginning, and also here's something very similar to get the flavor of these types of arguments.

Theorem 7.1. Suppose that R is Dedekind. Then every ideal in R can be generated by two elements.

Proof. Let I be an ideal of R and let $x \in I$. Then $R/(x)$ is a direct sum of rings of the form $R_{\mathfrak{p}}/R_{\mathfrak{p}}\mathfrak{p}^e$. All such rings have only principal ideal so any ideal of $R/(x)$ is principal. Let $\varphi: R \longrightarrow R/(x)$ and let $\varphi(y)$ generate $\varphi(I)$. Then $I = Rx + Ry$.

We make the following definitions

 $Inv(R)$ is the set of invertible fractional ideals of R

 $\mathbb{P}(R)$ is the set of principal fractional ideals of R

and

$$
Pic(R) = Inv(R)/\mathbb{P}(R).
$$

 $Pic(R)$ is called the Picard group of R.

We will show that if R is a DVR, then all of the fractional ideals of R are invertible. We'll also want a few facts about invertible ideals.

A note on definitions: Fractional ideals are not generally always assume to be finitely generated.

All invertible ideals are automatically finitely generated, though.

Lemma 7.2. Let J be a fractional ideal of an integral domain R . Then *J* is invertible \Leftrightarrow *J* is finitely generated and R_mJ is an invertible fractional ideal of $R_{\rm m}$ for every maximal ideal $\mathfrak m$ of R .

Proof. (\Rightarrow) Let J be an invertible ideal ideal of R. Then we can write

$$
\sum_{i=1}^{k} n_i m_i = 1
$$

with $n_i \in (R : J)$. Since $n_i J \in R$ for each i, we can write any $y \in J$ as $\sum_{i=1}^{k} (n_i y) m_i = y$, so the m_i generate J. Hence, J is finitely generated. Let **m** be a maximal ideal of R. Since we can write $J(R:J) = R$ we must have $R_{\mathfrak{m}}(J(R:J)) = R_{\mathfrak{m}}$, so $(R_{\mathfrak{m}}J)(R_{\mathfrak{m}}(R:J)) = R_{\mathfrak{m}}$, so $R_{\mathfrak{m}}J$ is invertible

 (\Leftarrow) For any ideal J, we can form $J(R:J) \subseteq R$ (not necessarily equal to R). This will be an ideal I of R. Let $\mathfrak m$ be a maximal ideal of R. Since J is finitely generated by assumption, we can apply the Lemma immediately above to obtain $(R_{\mathfrak{m}}: R_{\mathfrak{m}}J) = R_{\mathfrak{m}}(R:J)$. Hence, we have $R_{\mathfrak{m}}J(R:J)=R_{\mathfrak{m}}$. Thus the ideal $I=J(R:J)$ is not contained in any maximal ideal of R. Thus, $I = R$ and J is invertible. \Box

Theorem 7.3. Let R be a local integral domain. Then R is a $DVR \Leftrightarrow$ every nonzero ideal of R is invertible.

Proof. (\Rightarrow) If J is a fractional ideal, then $xJ \subset R$ for some $x \in R$. Hence $xJ = Ra$ for some $a \in R$ since a DVR is PID. Thus, $J = Ra x^{-1}$. Clearly $(R:J) = Ra^{-1}x$ and $J(R:J) = 1$, so J is invertible.

(\Leftarrow) Since every nonzero ideal $I \subset R$ is invertible, every ideal of R is finitely generated, so R is Noetherian. Now, it will suffice to show that every nonzero ideal in R is a power of the maximal ideal \mathfrak{m} of R. The set of ideals I of R that are not a power of \mathfrak{m} (note: we consider R to \mathfrak{m}^0 , so the unit ideal is considered to be a power of \mathfrak{m}) has a maximal element if it is not empty. Then $(R : \mathfrak{m})I \neq I$ since if $(R : \mathfrak{m})I = I$, then $mI = I$ which means that $I = 0$ by Nakayama's Lemma (note that R must be Noetherian since all fractional ideals are invertible). Since $(R : \mathfrak{m})I \supseteq I$ (since $1 \in (R : \mathfrak{m})$), this means that $(R : \mathfrak{m})I$ is strictly larger than I, and is thus a power of \mathfrak{m} , so $I = (R : \mathfrak{m})$ Im is also a power of m.

Now, we have the global counterpart.

Theorem 7.4. Let R be an integral domain. Then R is a Dedekind $domain \Leftrightarrow every fractional ideal of R is invertible.$

Proof. (\Rightarrow) Let J be a fractional ideal of R. Then, for every maximal ideal \mathfrak{m} , it is clear that $R_{\mathfrak{m}}J$ is a fractional ideal of $R_{\mathfrak{m}}$. Since $R_{\mathfrak{m}}$ is a DVR, $R_m J$ must be therefore be invertible for every maximal ideal m. Moreover, J must be finitely generated since there is an $x \in K$ for which xJ is an ideal of R and every ideal of R is finitely generated since R is Noetherian. Therefore, J must be invertible by a Lemma [7.2.](#page-0-0)

 (\Leftarrow) Since every ideal of R is invertible, every ideal of R is finitely generated, so R is Noetherian. So it's enough to show that $R_{\rm p}$ is a DVR for all nozero primes **p**. Let J be an ideal of R_p and let $I = J \cap R$. Then I is invertible so $R_{p}I = J$ is invertible by Lemma [7.2.](#page-0-0). Thus R_{p} is a DVR by Theorem [7.3.](#page-1-0)

□

Let's show that not only can every ideal I of a Dedekind domain R be factored uniquely, but so can every fractional ideal J of a Dedekind domain. Since every nonzero prime is invertible in R , we can write $\mathfrak{p}^{-1} = (R : \mathfrak{p})$ for maximal \mathfrak{p} (by the way nonzero prime means the same thing as maximal in a 1-dimensional integral domain of course).

□

Proposition 7.5. Let R be a Dedekind domain. Then every fractional ideal J of R has a unique factorization as

$$
J=\prod_{i=1}^n \mathfrak{p}_i^{e_i}
$$

with all the $e_i \neq 0$.

Proof. To see that J has some factorization as above we note xJ is an ideal I in R. So if we factor Rx and I and write $J = (x)^{-1}I$, we have a factorization. To see that the factorization is unique we write

$$
I=(\prod_{i=1}^n \mathfrak{p}_i^{e_i})(\prod_{j=1}^m \mathfrak{q}_j^{-f_j})
$$

with all the e_i and f_j positive and no \mathfrak{q}_j equal to any \mathfrak{p}_i . Let $I =$ $\prod_{j=1}^m \mathfrak{q}_j^{f_j}$ Then JI^2 is an ideal of R with $JI^2 = (\prod_{i=1}^n \mathfrak{p}_i^{e_i})(\prod_{j=1}^m \mathfrak{q}_j^{f_j})$ j^{jj} . Since I^2 has a unique factorization and so does JI^2 , so must \tilde{J} have a unique factorization. □

Back to showing that \mathcal{O}_K is Dedekind. All we need is to do is show that \mathcal{O}_K is Noetherian and one-dimensional. For R-modules (R a ring), it is easy to see that M satisfies the Noetherian ascending chain condition if and only if every submodule of M is finitely generated (as an R-module).

Proposition 7.6. Let R be a ring, let M' and M" be Noetherian Rmodules and let

$$
0\longrightarrow M'\longrightarrow M\longrightarrow M''\longrightarrow 0
$$

be an exact sequence of R-modules. Then M is Noetherian.

Proof. Let N be a submodule of M. Let a_1, \ldots, a_m generate $N \cap M'$ and let b_1, \ldots, b_n be elements of N whose image generates in M'' generates the image of N in M''. Then $a_1, \ldots, a_m, b_1, \ldots, b_n$ generates N. \Box

Corollary 7.7. Let A be a Noetherian ring and let M be a finitely generated A-module. Then M is a Noetherian A-module

Proof. We proceed by induction on the number of generators of M as an A-module. If M has one generator, then it is isomorphic to some quotient of A, so we're done. Otherwise, let x_1, \ldots, x_n generate M and write

$$
0 \longrightarrow Rx_n \longrightarrow M \longrightarrow M/(Rx_n) \longrightarrow 0.
$$

Then $M/(Rx_n)$ is generated by the images of x_1, \ldots, x_{n-1} , so must be Noetherian by the inductive hypothesis. By the Lemma above, M must be Noetherian. □