
Math 430 Tom Tucker
NOTES FROM CLASS 09/16/24

I wanted to do a very quick proof of something from last time.

Theorem 6.1. Let A be a Dedekind domain and let B be an integral
extension of A that is an integral domain. Then B has dimension 1.

Proof. We first show that if q ⊆ q′ satisfy q ∩ A = q′ ∩ A = p (for q,
q′ primes of B), then q = q′. This follows immediately from applying
Lemma 5.7 from last time to the extension B/q of A/p (using the fact
that the image of q′ cannot intersect A/p in the zero ideal unless this
image is 0). This implies that the dimension of B is at most 1 since
the dimension of A is 1. Now note that B has a nonzero maximal ideal
since it cannot be a field as it cannot contain the field of fractions of
A. Thus the dimension of B is 1. □

Note in the following proof we do not simply mod out by I and factor
0. We mod out by an ideal smaller than I so that the projection of
I onto each factor is not zero. That way we can apply Nakayama’s
lemma.

Here is the idea: we don’t truly have unique factoritzation in a ring
like R/pm since if q is the image of p in R/pm, then R/pn = 0 for all
n ≥ m. But we do have unique factorization for powers of q less than
m. So what we want do to is take a product of primes contained in our
ideal I so that I does not project onto 0 in any of the factors we get
from the Chinese Remainder Theorem. That is the idea of the next
proof.

Theorem 6.2. Let R be a Dedekind domain, let I ⊂ R be a nonzero
ideal, and let p1, . . . , pn be the set of primes that contain I. Then there
exists a unique n-tuple e1, . . . , en of non-negative integers such that

n∏
j=1

p
ej
j = I.

Proof. There are positive integers fj such that
m∏
j=1

p
fj−1
j ⊆ I

since R is Noetherian. Let’s set up a bit of notation first. For each

j = 1, . . . , n we have the quotient map ϕj : R −→ R/p
fj
j . Let ϕ be the

map from R to
⊕n

j=1R/p
fj
j given by

ϕ(r) = (ϕ1(r), . . . ϕn(r)).
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We’ll denote R/p
fj
j as Rj. Since ϕ(I) is an ideal, it has decomposition

as above ϕ(I) =
⊕n

j=1 ϕj(I). Each ϕj(I) is an ideal in R/p
fj
j . We know

that R/p
fj
j is isomorphic to Rpj/p

fj
j , so ϕj(I) must be a power of ϕj(pj);

here we use the fact that Rpj is a DVR. So we can write ϕj(I) = p
ej
j

for some unique ej < fj (since I was actually contained in the product
of the pi to the fi − 1 power). Since

ϕ(pj) =
⊕
ℓ ̸=j

Rj

⊕
ϕj(pj)

(this follows from the Chinese Remainder theorem, in fact), we see then
that

n∏
j=1

ϕ(p
ej
j ) =

n⊕
j=1

ϕj(pj) =
n⊕

j=1

ϕj(I) = ϕ(I).

Since all the ej ≤ fj, we have

kerϕ =
n∏

j=1

p
ej
j ⊂

n∏
j=1

p
fj
j ,

so

I = ϕ−1(ϕ(I)) = ϕ−1(
n∏

j=1

ϕ
(
p
ej
j )

)
=

n∏
j=1

p
ej
j ,

as desired. To see that the ei are unique, recall that ϕj(I) = ϕj(pj)
ej

for a unique ej, so for e′j < ej, we have

ϕj(pj)
ej ̸⊂ ϕj(I)

and for e′j > ej, we have

ϕj(I) ̸⊂ ϕj(pj)
ej

(by Nakayama’s Lemma), either of which forces the product

n∏
j=1

ϕ(pj) ̸= ϕ(I).

□

Now, for what are called fractional ideals

Definition 6.3. Let R be an integral domain with field of fractions
K. A fractional ideal of R is an R-submodule J ⊂ K for which there
is some nonzero x ∈ R such that xJ ⊂ R.
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Definition 6.4. For a fractional ideal J , we define (R : J) to be set

{x ∈ K | xJ ⊆ R}.
We say that J is invertible if J(R : J) = R.

A few remarks on the definition above. It is clear that (R : R) = R
since R contains 1 and is closed under multiplication. It follows that
when JN = R, we must have N = (R : J). Also note that J(R : J)
may not be all of R, as we’ll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the
invertible ideals of R form a group under fractional ideal multiplication,
since it clear that if J and N are invertible, so is JN and that if J is
invertible, then so is its inverse (R : J) invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists
some y such that Ry = J . The principal fractional ideals of J are
clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions

Inv(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = Inv(R)/P(R).

Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of

R are invertible. We’ll also want a few facts about invertible ideals.

Lemma 6.5. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then S−1R(R : J) = (S−1R : S−1RJ).

Proof. Since xJ ⊆ R implies that x
s
J ⊆ S−1R for any s ∈ S it is

clear that S−1R(R : J) ⊆ (S−1R : S−1RJ). To get the reverse in-
clusion, let y ∈ (S−1R : S−1RJ) and let m1, . . . ,mn generate J as an
R-module. Since yS−1RJ ⊆ S−1R, we must have ymi ⊂ S−1R, so we
can write ymi = ri/si where ri ∈ R and si ∈ S. Since (s1 · · · sny)mi =
(
∏

j ̸=i sj)ri ∈ R, this means that s1 · · · sny ∈ (R : J). Thus, y ∈
S−1R(R : J). □


