Math 430 Tom Tucker
NOTES FROM CLASS 09/16/24

I wanted to do a very quick proof of something from last time.

Theorem 6.1. Let A be a Dedekind domain and let B be an integral
extension of A that is an integral domain. Then B has dimension 1.

Proof. We first show that if ¢ C ¢’ satisfy gn A =¢' N A = p (for q,
q primes of B), then q = ¢q’. This follows immediately from applying
Lemma 5.7 from last time to the extension B/q of A/p (using the fact
that the image of q' cannot intersect A/p in the zero ideal unless this
image is 0). This implies that the dimension of B is at most 1 since
the dimension of A is 1. Now note that B has a nonzero maximal ideal

since it cannot be a field as it cannot contain the field of fractions of
A. Thus the dimension of B is 1. O

Note in the following proof we do not simply mod out by I and factor
0. We mod out by an ideal smaller than I so that the projection of
I onto each factor is not zero. That way we can apply Nakayama’s
lemma.

Here is the idea: we don’t truly have unique factoritzation in a ring
like R/p™ since if q is the image of p in R/p™, then R/p" = 0 for all
n > m. But we do have unique factorization for powers of q less than
m. So what we want do to is take a product of primes contained in our
ideal I so that I does not project onto 0 in any of the factors we get
from the Chinese Remainder Theorem. That is the idea of the next
proof.

Theorem 6.2. Let R be a Dedekind domain, let I C R be a nonzero
ideal, and let py, ..., p, be the set of primes that contain I. Then there
exists a unique n-tuple ey, . .., e, of non-negative integers such that

[Tey =1
j=1

Proof. There are positive integers f; such that

ﬁpjjl c1
j=1

since R is Noetherian. Let’s set up a bit of notation first. For each
j =1,...,n we have the quotient map ¢; : R — R/p;’. Let ¢ be the

map from R to P}, R/p;-cj given by
¢(r) = (¢1(r), ... ¢u(r)).
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We'll denote R/p;’ as R;. Since ¢([) is an ideal, it has decomposition
as above ¢(I) = @)_, ¢;(I). Each ¢;(I) is an ideal in R/p;’. We know
that R/pfj is isomorphic to Rpj/pfj, s0 ¢;(I) must be a power of ¢;(p;);
here we use the fact that R, is a DVR. So we can write ¢;(I) = pj’

for some unique e; < f; (since I was actually contained in the product
of the p; to the f; — 1 power). Since

o(p;) = EP R, P ¢(»))
Iy

(this follows from the Chinese Remainder theorem, in fact), we see then

that
[Ts05) = EB%(P;‘) = @%(I) = ¢(1).

=1
Since all the e; < f;, we have

kerg = [Twi < I w7,
j=1 j=1

SO
n n

1=07(o(h) =0 ([T () = T w5

j=1

as desired. To see that the e; are unique, recall that ¢,;(I) = ¢;(p;)%
for a unique e;, so for e;- < ej, we have

¢i(p;)7 & ¢5(I)
and for €} > e;, we have
o;(I) & ¢;(p;)*

(by Nakayama’s Lemma), either of which forces the product

n

[T 6 # (D).

Jj=1

Now, for what are called fractional ideals

Definition 6.3. Let R be an integral domain with field of fractions
K. A fractional ideal of R is an R-submodule J C K for which there
is some nonzero x € R such that xJ C R.



Definition 6.4. For a fractional ideal J, we define (R : J) to be set
{re K | zJ C R}.
We say that J is invertible if J(R: J) = R.

A few remarks on the definition above. It is clear that (R: R) = R
since R contains 1 and is closed under multiplication. It follows that
when JN = R, we must have N = (R : J). Also note that J(R : J)
may not be all of R, as we’ll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the
invertible ideals of R form a group under fractional ideal multiplication,
since it clear that if J and N are invertible, so is JN and that if J is
invertible, then so is its inverse (R : J) invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists
some y such that Ry = J. The principal fractional ideals of J are
clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions

Inv(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = Inv(R)/P(R).
Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of
R are invertible. We’ll also want a few facts about invertible ideals.

Lemma 6.5. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then ST'R(R:J) = (S"'R: S 'RJ).

Proof. Since xJ C R implies that 7J C S7IR for any s € S it is
clear that ST'R(R : J) C (S™'R : ST'RJ). To get the reverse in-
clusion, let y € (S™'R : ST'RJ) and let my, ..., m, generate J as an
R-module. Since yS™'RJ C S™'R, we must have ym; C S™'R, so we
can write ym; = r;/s; where r; € R and s; € S. Since (s1 -+ $,y)m; =
(IT; sj)r: € R, this means that s;---s,y € (R : J). Thus, y €
ST'R(R: J). O



