Math 430 Tom Tucker NOTES FROM CLASS 09/16/24

I wanted to do a very quick proof of something from last time.

Theorem 6.1. Let A be a Dedekind domain and let B be an integral extension of A that is an integral domain. Then B has dimension 1.

Proof. We first show that if $\mathfrak{q} \subseteq \mathfrak{q}'$ satisfy $\mathfrak{q} \cap A = \mathfrak{q}' \cap A = \mathfrak{p}$ (for \mathfrak{q} , \mathfrak{q}' primes of B), then $\mathfrak{q} = \mathfrak{q}'$. This follows immediately from applying Lemma 5.7 from last time to the extension B/\mathfrak{g} of A/\mathfrak{p} (using the fact that the image of \mathfrak{q}' cannot intersect A/\mathfrak{p} in the zero ideal unless this image is 0). This implies that the dimension of B is at most 1 since the dimension of A is 1. Now note that B has a nonzero maximal ideal since it cannot be a field as it cannot contain the field of fractions of A. Thus the dimension of B is 1. \Box

Note in the following proof we do not simply mod out by I and factor 0. We mod out by an ideal smaller than I so that the projection of I onto each factor is not zero. That way we can apply Nakayama's lemma.

Here is the idea: we don't truly have unique factoritzation in a ring like R/\mathfrak{p}^m since if q is the image of \mathfrak{p} in R/\mathfrak{p}^m , then $R/\mathfrak{p}^n = 0$ for all $n \geq m$. But we do have unique factorization for powers of q less than m. So what we want do to is take a product of primes contained in our ideal I so that I does not project onto 0 in any of the factors we get from the Chinese Remainder Theorem. That is the idea of the next proof.

Theorem 6.2. Let R be a Dedekind domain, let $I \subset R$ be a nonzero ideal, and let $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$ be the set of primes that contain I. Then there exists a unique n-tuple e_1, \ldots, e_n of non-negative integers such that

$$
\prod_{j=1}^n \mathfrak{p}_j^{e_j} = I.
$$

Proof. There are positive integers f_j such that

$$
\prod_{j=1}^m \mathfrak{p}_j^{f_j-1} \subseteq I
$$

since R is Noetherian. Let's set up a bit of notation first. For each $j = 1, \ldots, n$ we have the quotient map $\phi_j: R \longrightarrow R/\mathfrak{p}_j^{f_j}$ j^{j} . Let ϕ be the map from R to $\bigoplus_{j=1}^n R/\mathfrak{p}_j^{f_j}$ j_j given by

$$
\phi(r)=(\phi_1(r),\ldots \phi_n(r)).
$$

We'll denote $R/\mathfrak{p}_i^{f_j}$ $j_j^{(j)}$ as R_j . Since $\phi(I)$ is an ideal, it has decomposition as above $\phi(I) = \bigoplus_{j=1}^n \phi_j(I)$. Each $\phi_j(I)$ is an ideal in $R/\mathfrak{p}_j^{f_j}$ $_j^{j_j}$. We know that $R/\mathfrak{p}_i^{f_j}$ $_j^{f_j}$ is isomorphic to $R_{\mathfrak{p}_j}/\mathfrak{p}_j^{f_j}$ $j_j^{j_j}$, so $\phi_j(I)$ must be a power of $\phi_j(\mathfrak{p}_j)$; here we use the fact that $R_{\mathfrak{p}_j}$ is a DVR. So we can write $\phi_j(I) = \mathfrak{p}_j^{e_j}$ j for some unique $e_j < f_j$ (since I was actually contained in the product of the \mathfrak{p}_i to the $f_i - 1$ power). Since

$$
\phi(\mathfrak{p}_j) = \bigoplus_{\ell \neq j} R_j \bigoplus \phi_j(\mathfrak{p}_j)
$$

(this follows from the Chinese Remainder theorem, in fact), we see then that

$$
\prod_{j=1}^n \phi(\mathfrak{p}_j^{e_j}) = \bigoplus_{j=1}^n \phi_j(\mathfrak{p}_j) = \bigoplus_{j=1}^n \phi_j(I) = \phi(I).
$$

Since all the $e_j \leq f_j$, we have

$$
\ker \phi = \prod_{j=1}^n \mathfrak{p}_j^{e_j} \subset \prod_{j=1}^n \mathfrak{p}_j^{f_j},
$$

so

$$
I = \phi^{-1}(\phi(I)) = \phi^{-1}(\prod_{j=1}^n \phi(\mathfrak{p}_j^{e_j})) = \prod_{j=1}^n \mathfrak{p}_j^{e_j},
$$

as desired. To see that the e_i are unique, recall that $\phi_j(I) = \phi_j(\mathfrak{p}_j)^{e_j}$ for a unique e_j , so for $e'_j < e_j$, we have

$$
\phi_j(\mathfrak{p}_j)^{e_j}\not\subset \phi_j(I)
$$

and for $e'_j > e_j$, we have

$$
\phi_j(I) \not\subset \phi_j(\mathfrak{p}_j)^{e_j}
$$

(by Nakayama's Lemma), either of which forces the product

$$
\prod_{j=1}^n \phi(\mathfrak{p}_j) \neq \phi(I).
$$

□

Now, for what are called fractional ideals

Definition 6.3. Let R be an integral domain with field of fractions K. A fractional ideal of R is an R-submodule $J \subset K$ for which there is some nonzero $x \in R$ such that $xJ \subset R$.

Definition 6.4. For a fractional ideal J, we define $(R:J)$ to be set

$$
\{x \in K \mid xJ \subseteq R\}.
$$

We say that J is invertible if $J(R:J) = R$.

A few remarks on the definition above. It is clear that $(R: R) = R$ since R contains 1 and is closed under multiplication. It follows that when $JN = R$, we must have $N = (R : J)$. Also note that $J(R : J)$ may not be all of R , as we'll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the invertible ideals of R form a group under fractional ideal multiplication, since it clear that if J and N are invertible, so is JN and that if J is invertible, then so is its inverse $(R:J)$ invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists some y such that $Ry = J$. The principal fractional ideals of J are clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions

 $Inv(R)$ is the set of invertible fractional ideals of R

 $\mathbb{P}(R)$ is the set of principal fractional ideals of R

and

$$
Pic(R) = Inv(R)/\mathbb{P}(R).
$$

 $Pic(R)$ is called the Picard group of R.

We will show that if R is a DVR, then all of the fractional ideals of R are invertible. We'll also want a few facts about invertible ideals.

Lemma 6.5. Let J be a finitely generated fractional ideal of an integral domain R with field of fractions K and let S be a multiplicative set S in R not containing 0. Then $S^{-1}R(R:J) = (S^{-1}R: S^{-1}RJ)$.

Proof. Since $xJ \subseteq R$ implies that $\frac{x}{s}J \subseteq S^{-1}R$ for any $s \in S$ it is clear that $S^{-1}R(R:J) \subseteq (S^{-1}R: S^{-1}RJ)$. To get the reverse inclusion, let $y \in (S^{-1}R : S^{-1}RJ)$ and let m_1, \ldots, m_n generate J as an R-module. Since $yS^{-1}RJ \subseteq S^{-1}R$, we must have $ym_i \subset S^{-1}R$, so we can write $ym_i = r_i/s_i$ where $r_i \in R$ and $s_i \in S$. Since $(s_1 \cdots s_n y) m_i =$ $(\prod_{j\neq i} s_j)r_i \in R$, this means that $s_1 \cdots s_n y \in (R : J)$. Thus, $y \in$ $S^{-1}\hat{R}(R:J).$