Math 430 Tom Tucker NOTES FROM CLASS 09/11/24

One more criterion related to being a DVR.

Proposition 5.1. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} . Let $I \subseteq M$ have the property that $I + \mathfrak{m}^2 = \mathfrak{m}$. Then $I = \mathfrak{m}$.

Proof. Let $N = \mathfrak{m}/I$. Let $a \in \mathfrak{m}$. Then there is a $b \in \mathfrak{m}^2 = \mathfrak{m}\mathfrak{m}$ such that $a - b \in I$; hence the image of a in N is equal to the image of b in N, and the image of b in N is in $\mathfrak{m}N$. Thus, $\mathfrak{m}N = N$. By Nakayama's lemma (note that N is finitely generated since A is Noetherian), we have N = 0 so $I = \mathfrak{m}$.

Corollary 5.2. Let A be a Noetherian local ring. Let \mathfrak{m} be its maximal ideal and let k be the residue field A/\mathfrak{m} . Then

$$\dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$$

if and only if \mathfrak{m} is principal

Proof. One direction is easy: If \mathfrak{m} is generated by π , then $\mathfrak{m}/\mathfrak{m}^2$ is generated by the image of π modulo \mathfrak{m}^2 . To prove the other direction, suppose that $\mathfrak{m}/\mathfrak{m}^2$ has dimension 1. Then we can write $\mathfrak{m} = Ra + \mathfrak{m}^2$ for some $a \in \mathfrak{m}$. By the previous lemma, we thus have $\mathfrak{m} = Ra$.

Proposition 5.3. Let R be a domain and let $S \subseteq R$ be a multiplicative subset not containing 0. Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1}R \Leftrightarrow sb$ is integral over R for some $s \in S$.

Proof. If b is integral over $S^{-1}R$, then we can write

$$b^{n} + \frac{a_{n-1}}{s_{n-1}}b^{n-1} + \dots + \frac{b_{0}}{s_{0}} = 0$$

Letting $s = \prod_{i=0}^{n-1} s_i$ and multiplying through by s^n we obtain

$$(sb)^n + a'_{n-1}(sb)^{n-1} + \dots + a'_0 = 0$$

where

$$a'_i = s^{n-i-1} \prod_{\substack{j=1\\j\neq i}}^n s_i a_i$$

which is clearly in R. Hence sb is integral over R. Similarly, if an element sb with $b \in S^{-1}R$ and $s \in S$ satisfies an equation

$$(sb)^n + a_{n-1}(sb)^{n-1} + \dots + a_0 = 0,$$

with $a_i \in R$, then dividing through by s^n gives an equation

$$b^n + \frac{a_{n-1}}{s}b^{n-1} + \dots + \frac{a_0}{s^n},$$

with coefficients in $S^{-1}R$.

Corollary 5.4. If R is integrally closed, then $S^{-1}R$ is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1}R$ has the property that sc is integral over R for some $s \in S$, this means that $sc \in R$ for some $s \in S$ and hence that $c \in S^{-1}R$.

Lemma 5.5. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.

Proof. Let $b \in I$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$a_n b^n + \dots + a_0 = 0,$$

for $a_i \in A$ and $a_0 \neq 0$. Then $a_0 \in I \cap \mathbb{Z}$.

Theorem 5.6. Let α be an algebraic number that is integral over \mathbb{Z} . Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.

Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module, any ideal of $\mathbb{Z}[\alpha]$ is also a finitely generated \mathbb{Z} -module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathfrak{q} be a prime in $\mathbb{Z}[\alpha]$. Then, $\mathfrak{q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z} . Hence, $\mathbb{Z}[\alpha]/\mathfrak{q}$ is a quotient of $\mathbf{F}_p[X]/f(X)$ where f(X) is the minimal monic satisfied by α . Since $\mathbf{F}_p[X]/f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha]/\mathfrak{q}$ is a field so \mathfrak{q} must be maximal.

Remark 5.7. The rings we deal with will *not* in general have this form.

Lemma 5.8. Let R be a ring that has direct sum decomposition

$$R = \bigoplus_{j=1}^{n} R_j.$$

Then every ideal in $I \subset R$ can be written as

$$I = \bigoplus_{j=1}^{n} I_j$$

$$\mathfrak{p} = \bigoplus_{\ell \neq j} R_\ell \bigoplus \mathfrak{p}_j$$

Proof. We can view $R = \bigoplus_{j=1}^{n} R_j$ as the set of

 (r_1,\ldots,r_n)

with $r_j \in R_j$. Let p_j be the usual projection from R onto its j-th coordinate and let i_j be the usual embedding of R_j into R obtained by sending $r_j \in R_j$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_j . Since an ideal I of R must be a $i_j(R_j)$ module, the set of $p_j(r)$ for which $r \in I$ must form an ideal R_j ideal, call it I_j . It is easy to see that $I_j = p_j(I)$. Certainly, $I \subset \bigoplus p_j(I)$. Since we can multiply anything in I by $(0, \ldots, 1_j, 0, \ldots, 0)$ we see that $i_j p_j(I) \subset I$. Hence $\bigoplus p_j(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^n R_j$. For prime ideals, we note that if \mathfrak{p} is a prime then $(a_1, \ldots, a_n)(b_1, \ldots, b_n) \in \mathfrak{p}$ implies that $a_j b_j \in p_j(\mathfrak{p})$ for each j, so $p_j(\mathfrak{p})$ must be a prime of R_j or all of R_j . Suppose we had $k \neq j$ with $p_j(\mathfrak{p}) \neq R_j$ and $p_k(\mathfrak{p}) \neq R_k$. Then choosing $a_j \in p_j(\mathfrak{p})$, $a_k \in p_k(\mathfrak{p})$ and $b_j \notin p_j(\mathfrak{p})$, $b_k \notin p_k(\mathfrak{p})$, we see that

$$(i_j(a_j)+i_j(b_k))(i_j(b_j)+i_k(a_k)) \in \mathfrak{p},$$

but $(i_j(a_j) + i_j(b_k)), (i_j(b_j) + i_k(a_k)) \notin \mathfrak{p}$, a contradiction, so $p_j(\mathfrak{p}) = R_j$ for all but one j. Thus

$$\mathfrak{p} = \bigoplus_{\ell \neq j} R_\ell \bigoplus \mathfrak{p}_j$$

for some prime \mathfrak{p}_i of R_i .

Corollary 5.9. Let R be a Noetherian ring in which every prime ideal is maximal. Then R has only finitely many prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and can be written as

$$R \cong \bigoplus_{j=1}^n R/\mathfrak{p}_i^{w_i}.$$

Proof. Since R is Noetherian, there are prime ideals \mathbf{p}_i such that $\prod_{j=1}^n \mathbf{p}_i^{w_i} = 0$ (remember that we can make the product be contained in 0 and 0 is

0 (remember that we can make the product be contained in 0 and 0 is the only element in R0). Then the natural map

$$R \longrightarrow \bigoplus_{j=1}^n R/\mathfrak{p}_i^{w_i}$$

is surjective with kernel 0, hence it is an isomoprhism. Within each factor $R/\mathfrak{p}_i^{w_i}$, the only prime ideal is the image of \mathfrak{p}_i under the quotient map ϕ , since the image of any other prime under ϕ is all of $R/\mathfrak{p}_i^{w_i}$ by the Lemma above. Hence, $\phi(\mathfrak{p}_i)$ is the only prime in $R/\mathfrak{p}_i^{w_i}$. By the Lemma above, the only primes in R are of the form $\bigoplus_{\ell \neq i} R \bigoplus \phi(\mathfrak{p}_i)$. \Box

Corollary 5.10. Let R be a Noetherian domain of dimension 1. Then every nonzero ideal I is contained in finitely many prime ideals \mathfrak{p} .

Proof. Every prime ideal in R/I is maximal, so the proposition above applies.

Lemma 5.11. Let R be a integral domain, let \mathfrak{m} be a maximal ideal of R, let $n \ge q$, and let ϕ be the quotient map $\phi : R \longrightarrow R/\mathfrak{m}^n$ be the quotient map. Then $\phi(s)$ is a unit in R/\mathfrak{m}^n for every $s \in R \setminus \mathfrak{m}$.

Proof. Since \mathfrak{m} is maximal, we can have $Rs + \mathfrak{m} = 1$ for $s \notin \mathfrak{m}$. Thus, we can write ax + m = 1 for $a \in R$ and $m \in \mathfrak{m}^n$ using facts about coprime ideals proved earlier. Thus $ax = 1 \pmod{\mathfrak{m}^n}$, so $\phi(ax) = 1$. \Box