
Math 430 Tom Tucker
NOTES FROM CLASS 09/11/24

One more criterion related to being a DVR.

Proposition 5.1. Let A be a Noetherian local ring with maximal ideal
m. Let I ⊆ M have the property that I +m2 = m. Then I = m.

Proof. Let N = m/I. Let a ∈ m. Then there is a b ∈ m2 = mm such
that a− b ∈ I; hence the image of a in N is equal to the image of b in
N , and the image of b in N is in mN . Thus, mN = N . By Nakayama’s
lemma (note that N is finitely generated since A is Noetherian), we
have N = 0 so I = m. □

Corollary 5.2. Let A be a Noetherian local ring. Let m be its maximal
ideal and let k be the residue field A/m. Then

dimk m/m2 = 1

if and only if m is principal

Proof. One direction is easy: If m is generated by π, then m/m2 is
generated by the image of π modulo m2. To prove the other direction,
suppose that m/m2 has dimension 1. Then we can write m = Ra+m2

for some a ∈ m. By the previous lemma, we thus have m = Ra. □

Proposition 5.3. Let R be a domain and let S ⊆ R be a multiplicative
subset not containing 0. Let b ∈ K, where K is the field of fractions
of R. Then b is integral over S−1R ⇔ sb is integral over R for some
s ∈ S.

Proof. If b is integral over S−1R, then we can write

bn +
an−1

sn−1

bn−1 + · · ·+ b0
s0

= 0.

Letting s =
∏n−1

i=0 si and multiplying through by sn we obtain

(sb)n + a′n−1(sb)
n−1 + · · ·+ a′0 = 0

where

a′i = sn−i−1

n∏
j=1
j ̸=i

siai

which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b ∈ S−1R and s ∈ S satisfies an equation

(sb)n + an−1(sb)
n−1 + · · ·+ a0 = 0,
1



2

with ai ∈ R, then dividing through by sn gives an equation

bn +
an−1

s
bn−1 + · · ·+ a0

sn
,

with coefficients in S−1R.
□

Corollary 5.4. If R is integrally closed, then S−1R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element c ∈ K that is integral over S−1R has the property
that sc is integral over R for some s ∈ S, this means that sc ∈ R for
some s ∈ S and hence that c ∈ S−1R.

□

Lemma 5.5. Let A ⊆ B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have
I ∩ A ̸= 0.

Proof. Let b ∈ I be nonzero. Since b is algebraic over A and b ̸= 0, we
can write

anb
n + · · ·+ a0 = 0,

for ai ∈ A and a0 ̸= 0. Then a0 ∈ I ∩ Z. □

Theorem 5.6. Let α be an algebraic number that is integral over Z.
Suppose that Z[α] is integrally closed. Then Z[α] is a Dedekind domain.

Proof. Since Z[α] is a finitely generated Z-module, any ideal of Z[α[ is
also a finitely generated Z-module. Hence, any ideal of Z[α] is finitely
generated over Z[α], so Z[α] is Noetherian. Let q be a prime in Z[α].
Then, q ∩ Z is a prime ideal (p) in Z. Hence, Z[α]/q is a quotient of
Fp[X]/f(X) where f(X) is the minimal monic satisfied by α. Since
Fp[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[α]/q is a field so q must be maximal. □

Remark 5.7. The rings we deal with will not in general have this form.

Lemma 5.8. Let R be a ring that has direct sum decomposition

R =
n⊕

j=1

Rj.

Then every ideal in I ⊂ R can be written as

I =
n⊕

j=1

Ij
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for ideals Ij ⊂ Rj. If p is a prime of R then there is some j for which
we can write

p =
⊕
ℓ̸=j

Rℓ

⊕
pj

Proof. We can view R =
⊕n

j=1Rj as the set of

(r1, . . . , rn)

with rj ∈ Rj. Let pj be the usual projection from R onto its j-th
coordinate and let ij be the usual embedding of Rj into R obtained by
sending rj ∈ Rj to the element of R with all coordinates 0 except for
the j-th coordinate which is set to rj. Since an ideal I of R must be a
ij(Rj) module, the set of pj(r) for which r ∈ I must form an ideal Rj

ideal, call it Ij. It is easy to see that Ij = pj(I). Certainly, I ⊂
⊕

pj(I).
Since we can multiply anything in I by (0, . . . , 1j, 0, . . . , 0) we see that
ijpj(I) ⊂ I. Hence

⊕
pj(I) ⊂ I, and we are done with our description

of ideals of
⊕n

j=1Rj. For prime ideals, we note that if p is a prime

then (a1, . . . , an)(b1, . . . , bn) ∈ p implies that ajbj ∈ pj(p) for each j, so
pj(p) must be a prime of Rj or all of Rj. Suppose we had k ̸= j with
pj(p) ̸= Rj and pk(p) ̸= Rk. Then choosing aj ∈ pj(p), ak ∈ pk(p) and
bj /∈ pj(p), bk /∈ pk(p), we see that

(ij(aj) + ij(bk))(ij(bj) + ik(ak)) ∈ p,

but (ij(aj)+ ij(bk)), (ij(bj)+ ik(ak)) /∈ p, a contradiction, so pj(p) = Rj

for all but one j. Thus

p =
⊕
ℓ̸=j

Rℓ

⊕
pj

for some prime pj of Rj. □

Corollary 5.9. Let R be a Noetherian ring in which every prime ideal
is maximal. Then R has only finitely many prime ideals p1, . . . , pn and
can be written as

R ∼=
n⊕

j=1

R/pwi
i .

Proof. SinceR is Noetherian, there are prime ideals pi such that
n∏

j=1

pwi
i =

0 (remember that we can make the product be contained in 0 and 0 is
the only element in R0). Then the natural map

R −→
n⊕

j=1

R/pwi
i
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is surjective with kernel 0, hence it is an isomoprhism. Within each
factor R/pwi

i , the only prime ideal is the image of pi under the quotient
map ϕ, since the image of any other prime under ϕ is all of R/pwi

i by the
Lemma above. Hence, ϕ(pi) is the only prime in R/pwi

i . By the Lemma
above, the only primes in R are of the form

⊕
ℓ̸=j R

⊕
ϕ(pi). □

Corollary 5.10. Let R be a Noetherian domain of dimension 1. Then
every nonzero ideal I is contained in finitely many prime ideals p.

Proof. Every prime ideal in R/I is maximal, so the proposition above
applies. □

Lemma 5.11. Let R be a integral domain, let m be a maximal ideal
of R, let n ≥ q, and let ϕ be the quotient map ϕ : R −→ R/mn be the
quotient map. Then ϕ(s) is a unit in R/mn for every s ∈ R \m.

Proof. Since m is maximal, we can have Rs+m = 1 for s /∈ m. Thus, we
can write ax+m = 1 for a ∈ R and m ∈ mn using facts about coprime
ideals proved earlier. Thus ax = 1 (mod mn), so ϕ(ax) = 1. □


