Math 430 Tom Tucker NOTES FROM CLASS 09/09/24x

Earlier we said that we wanted to show that \mathcal{O}_K had many of the same properties as \mathbb{Z} . What we will in fact show is that \mathcal{O}_K is something called a Dedekind domain. A Dedekind domain is a simple kind of ring. Let us first define an even simpler kind of ring, a *discrete valuation ring*, frequently called a DVR.

Definition 4.1. A discrete valuation on a field K is a surjective homomorphism from K^* onto the additive group of $\mathbb Z$ such that

(1)
$$
v(xy) = v(x) + (y);
$$

(2)
$$
v(x + y) \ge \min(v(x), v(y)).
$$

By convention, we say that $v(0) = \infty$.

Remark 4.2. Note that it follows from property 2 that if $v(x) > v(y)$, then $v(x + y) = v(y)$. To prove this we note that $v(-x) = v(x)$ and $v(y) = v(-y)$, so we have

$$
v(y) \ge \min(v(x+y), v(-x)) \ge v(x+y)
$$

since $v(x) > v(y)$. Since $v(x + y) > min(v(x), v(y))$ also, we must have $v(x + y) = v(y).$

Example 4.3. Let v_p be the *p*-adic valuation on \mathbb{Q} . That is to say that $v_p(a)$ is the largest power dividing a for $a \in \mathbb{Z}$ and $v_p(a/b) =$ $v_p(a) - v_p(b)$ for $a, b \in \mathbb{Z}$.

Definition 4.4. A discrete valuation R ring is a set of the form

 ${a \in K \mid v(a) \geq 0}$

How can we identify a DVR? The following will help.

A couple remarks first:

(1) If I and J are principal then so is IJ . In particular, any power of a principal ideal is principal.

(2) Notation: for any ideal I of R, we say $I^0 = R$.

Proposition 4.5. Let R be a Noetherian local domain of dimension 1 with maximal ideal m and with $R/\mathfrak{m} = k$ its residue field. Then the following are equivalent

- (1) R is a DVR:
- (2) R is integrally closed;
- (3) m is principal;
- (4) there is some $\pi \in R$ such that every nonzero element $a \in R$ can be written uniquely as $u\pi^n$ for some unit u and some integer $n \geq 0$;
- (5) every nonzero ideal is a power of m.

Proof. $(1 \Rightarrow 2)$ Suppose that $b \in K \setminus R$. Then $v(b) < 0$, so for any monic polynomial in b with coefficients in R , we have

$$
v(b^{n} + a_{n}b^{n-1} + \cdots + a_{0}) = v(b^{n}) < 0,
$$

which means that $b^n + a_n b^{n-1} + \cdots + a_0 \neq 0$.

 $(2 \Rightarrow 3)$ Let $a \in \mathfrak{m}$ be nonzero. There is some *n* for which $\mathfrak{m}^n \subseteq (a)$ (by "weak factorization" in Noetherian rings) but \mathfrak{m}^{n-1} is not contained in (a) (note n−1 could be zero). Let $b \in \mathfrak{m}^{n-1} \setminus (a)$ and let $x = a/b$. We can show that $\mathfrak{m} = Rx$. This is equivalent to showing that $x^{-1}\mathfrak{m} = R$. Note that since (b) is not in (a), $b/a = x^{-1}$ cannot be in R. Hence, it cannot be integral over R. By Cayley-Hamilton, x^{-1} m \neq m since m is finitely generated as an R-module and $x^{-1} \notin R$ and R is integrally closed. Since x^{-1} m is an R-module and x^{-1} m $\subseteq R$ (this follows from the fact that $b\mathfrak{m} \subseteq \mathfrak{m}^n \subseteq (a)$, this means that $x^{-1}\mathfrak{m}$ is an ideal of R not contained in \mathfrak{m} . So $x^{-1}\mathfrak{m} = R$, as desired.

 $(3 \Rightarrow 4)$ Let π generate m. Now, let $a \in R$ be nonzero. We define $w(a)$ to be the smallest n for which $\mathfrak{m}^n \subseteq Ra$; such an n exists by "weak" factorization" in Noetherian rings. We will show by induction on $w(a)$ that a can be written as $u\pi^{w(a)}$ for some unit u. The case $w(a) = 0$ is trivial, since $w(a) = 0$ means a is a unit. If $w(a) \geq 1$, then $a \in \mathfrak{m}$. Then we can write $a = \pi b$ for some b. Since, any element in \mathfrak{m}^n , which is simply the set of $z\pi^n$ for $z \in R$, can be written as xa for some $x \in R$, any element $z\pi^{w(a)-1}$ in $\mathfrak{m}^{w(a)-1}$ can be written as xb for that same x. Hence $w(b) \leq w(a) - 1$. By the same reasoning, $w(b) \geq w(a) - 1$. Hence $w(b) = w(a) - 1$. So we can write b uniquely as $u\pi^{w(b)}$ for some unit u (by induction on $w(b)$), which gives $a = u\pi^{w(a)}$ uniquely.

 $(4 \Rightarrow 5)$ Let I be an ideal of R. Since I is finitely generated, it has generators m_1, \ldots, m_n which can all be written as $u_i \pi^{t_i}$. Then the *i* for which t_i is smallest will generate I from above.

 $(5 \Rightarrow 1)$ Let $a \in R$. Then $Ra = \mathfrak{m}^n$ for some unique n. Letting $v(a) = n$ gives the desired valuation.

□

Example 4.6. The ideal **p** generated by 2 and $\sqrt{5} - 5$ in $\mathbb{Z}[\sqrt{5}]$ **6.** The ideal **p** generated by 2 and $\sqrt{5} - 5$ in $\mathbb{Z}[\sqrt{5}]$ is prime but $\mathbb{Z}[\sqrt{5}]_{\mathfrak{p}}$ is not a DVR. More on this later.

Definition 4.7. Dedekind domain is a Noetherian domain R such that $R_{\mathfrak{p}}$ is a DVR for every nonzero prime \mathfrak{p} of R.

2

The ideal structure is a bit more complicated than that of a DVR. Recall that in any noetherian ring R for every ideal I we can write $\prod_{i=1}^{n} \mathfrak{p}_i \subseteq I$ with $\mathfrak{p}_i \supseteq I$. We'll prove that in a Dedekind domain we can $i=1$
write get an inequality and get it uniquely.

One more thing: we'll want to work in Noetherian domains of (Krull) dimension 1 more generally, as you'll see later. So we'll try to state results for them when possible.

To understand how to factorize an ideal I, we'll want to understand R/I . To help us with this we'll want the Chinese remainer theorem.

The Chinese remainder theorem really consists of writing 1 in a lot of different ways. Let's prove the following easy Lemma.

Lemma 4.8. Let I and J be ideals in R. Suppose that $I + J = 1$. Then

- (1) $I \cap J = IJ$; and
- (2) for any positive integers m, n, we have $I^m + J^n = 1$.

Proof. Since $I + J = 1$, we can write $a + b = 1$ for $a \in I$ and $b \in J$. Now 1. follows from the fact that for if $x \in I \cap J$, then $x = (a + b)x =$ $ax + bx \in IJ$, so $I \cap J \subseteq IJ$. The reverse inclusion $IJ \subseteq I \cap J$ is obvious (ad true for any ideals I and J). To prove 2, we simply write $(a+b)^{2(m+n)}=1$, and note that the expansion of $(a+b)^{2(m+n)}$ consists entirely of elements in either $I^{m+n} \subseteq I^m$ or $J^{m+n} \subseteq J^n$.
. □

Lemma 4.9. Let I and J be ideals of R and suppose that $I + J = 1$. Then the natural map

$$
\phi: R \longrightarrow R/I \oplus R/J
$$

is surjective with kernel IJ.

Proof. The kernel is $I \cap J$ which equals IJ from the Lemma above. Now, to see that it is surjective, write $a + b = 1$ with $a \in I$ and $b \in J$. Then $b = 1 - a$ and $\phi(b) = (1, 0)$ and $\phi(a) = (0, 1)$. Since $\phi(R)$ is clearly a $R/I \oplus R/J$ module and $R/I \oplus R/J$ is generated by $(1,0)$ and $(0, 1)$ as an $R/I \oplus R/J$ module, ϕ must be surjective.