Math 430 Tom Tucker
NOTES FROM CLASS 09/09/24x

Earlier we said that we wanted to show that O had many of the
same properties as Z. What we will in fact show is that Ok is something
called a Dedekind domain. A Dedekind domain is a simple kind of ring.
Let us first define an even simpler kind of ring, a discrete valuation ring,
frequently called a DVR.

Definition 4.1. A discrete valuation on a field K is a surjective ho-
momorphism from K* onto the additive group of Z such that

(1) v(zy) = v(@) + (y);
(2) v(z +y) = min(v(z), v(y))-

By convention, we say that v(0) = oo.

Remark 4.2. Note that it follows from property 2 that if v(z) > v(y),
then v(z 4+ y) = v(y). To prove this we note that v(—x) = v(z) and
v(y) = v(—y), so we have

v(y) = min(v(z +y), v(=2)) = v(z +y)

since v(x) > v(y). Since v(z +y) > min(v(z),v(y)) also, we must have
v(a +y) = v(y).

Example 4.3. Let v, be the p-adic valuation on Q. That is to say
that v,(a) is the largest power dividing a for a € Z and v,(a/b) =
vp(a) — vy(b) for a,b € Z.

Definition 4.4. A discrete valuation R ring is a set of the form
{a € K | v(a) >0}

How can we identify a DVR? The following will help.

A couple remarks first:
(1) If I and J are principal then so is I.J. In particular, any power of
a principal ideal is principal.
(2) Notation: for any ideal I of R, we say I’ = R.

Proposition 4.5. Let R be a Noetherian local domain of dimension
1 with mazimal ideal m and with R/m = k its residue field. Then the
following are equivalent

(1) R is a DVR;

(2) R is integrally closed;

(3) m is principal;



(4) there is some ™ € R such that every nonzero element a € R can
be written uniquely as un™ for some unit u and some integer
n>0;

(5) every nonzero ideal is a power of m.

Proof. (1 = 2) Suppose that b € K \ R. Then v(b) < 0, so for any
monic polynomial in b with coefficients in R, we have

(0" 4+ apb" Tt -+ ag) = v(b") <0,

which means that b" + a,0" ! + -+ +ag # 0.

(2 = 3) Let a € m be nonzero. There is some n for which m™ C (a)
(by “weak factorization” in Noetherian rings) but m"~! is not contained
in (a) (note n—1 could be zero). Let b € m" !\ (a) and let z = a/b. We
can show that m = Rx. This is equivalent to showing that z™'m = R.
Note that since (b) is not in (a), b/a = x~! cannot be in R. Hence,
it cannot be integral over R. By Cayley-Hamilton, 7 'm # m since m
is finitely generated as an R-module and 7! ¢ R and R is integrally
closed. Since z7'm is an R-module and z7'm C R (this follows from
the fact that bm C m™ C (a)), this means that z7'm is an ideal of R
not contained in m. So 7 'm = R, as desired.

(3 = 4) Let 7 generate m. Now, let a € R be nonzero. We define
w(a) to be the smallest n for which m” C Ra; such an n exists by “weak
factorization” in Noetherian rings. We will show by induction on w(a)
that a can be written as ur®@ for some unit u. The case w(a) = 0
is trivial, since w(a) = 0 means «a is a unit. If w(a) > 1, then a € m.
Then we can write a = 7b for some b. Since, any element in m”, which
is simply the set of z7™ for z € R, can be written as za for some x € R,
any element z7®(®~1 in m®(®~1 can be written as b for that same .
Hence w(b) < w(a) — 1. By the same reasoning, w(b) > w(a) — 1.
Hence w(b) = w(a) — 1. So we can write b uniquely as ur®® for some
unit u (by induction on w(b)), which gives a = un™® uniquely.

(4 = 5) Let I be an ideal of R. Since [ is finitely generated, it has
generators myq, . .., m, which can all be written as u;w%. Then the ¢ for
which ¢; is smallest will generate I from above.

(5= 1) Let a € R. Then Ra = m” for some unique n. Letting
v(a) = n gives the desired valuation.

O

Example 4.6. The ideal p generated by 2 and /5 — 5 in Z[V/5] is
prime but Z[+/5], is not a DVR. More on this later.

Definition 4.7. Dedekind domain is a Noetherian domain R such that
R, is a DVR for every nonzero prime p of R.
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The ideal structure is a bit more complicated than that of a DVR.
Recall that in any noetherian ring R for every ideal I we can write
[]p: €I with p; O I. We'll prove that in a Dedekind domain we can
i=1
write get an inequality and get it uniquely.

One more thing: we’ll want to work in Noetherian domains of (Krull)
dimension 1 more generally, as you’ll see later. So we’ll try to state
results for them when possible.

To understand how to factorize an ideal I, we’ll want to understand
R/I. To help us with this we’ll want the Chinese remainer theorem.

The Chinese remainder theorem really consists of writing 1 in a lot
of different ways. Let’s prove the following easy Lemma.

Lemma 4.8. Let I and J be ideals in R. Suppose that I + J = 1.
Then

(1) InJ=1J; and

(2) for any positive integers m,n, we have I"™ + J" = 1.

Proof. Since I +J = 1, we can write a +b =1 fora € [ and b € J.
Now 1. follows from the fact that for if x € TN J, then x = (a + b)z =
ar +bx € IJ,so INJ C IJ. The reverse inclusion IJ C I N J is
obvious (ad true for any ideals I and J). To prove 2., we simply write
(a+b)%™m+") = 1 and note that the expansion of (a +b)2™*+™ consists
entirely of elements in either I+t C ™ or J™*t" C J". O

Lemma 4.9. Let I and J be ideals of R and suppose that [ + J = 1.
Then the natural map

¢:R— R/I®R/J
15 surjective with kernel 1.J.

Proof. The kernel is I N J which equals /J from the Lemma above.
Now, to see that it is surjective, write a +b =1 with a € I and b € J.
Then b = 1 —a and ¢(b) = (1,0) and ¢(a) = (0,1). Since ¢(R) is
clearly a R/I & R/J module and R/I @ R/J is generated by (1,0) and
(0,1) as an R/I & R/J module, ¢ must be surjective. O



