Math 430 Tom Tucker NOTES FROM CLASS 09/04/24

Last time we were in the process of defining Noetherian rings. Recall...

Definition 3.1. A ring A is said to be *Noetherian* if it satisfies the ascending chain condition which states that if there is a sequence of ideals I_m such that

$$
I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m \subseteq \ldots
$$

then there is an N such that for all $n \geq N$, we have $I_n = I_{n+1}$. In other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no larger proper ideal J containing I. Maximal ideals are usually written as m.

Lemma 3.2. Let A be a Noetherian ring. Any subset S of ideals of A has a maximal element (here maximal means that there is no strictly larger ideal $I' \supset I$ in S).

Proof. Let $I_0 \in \mathcal{S}$. If I is not maximal in S there is a larger ideal $I_1 \in \mathcal{S}$ containing I_0 . Similarly, if I_1 is not maximal there is a larger ideal $I_2 \in \mathcal{S}$ containing it and so on, so we have an ascending chain of ideals

$$
I_0 \subseteq I_1 \subseteq \cdots \subseteq I_m \subseteq \ldots,
$$

which means that there is some N such that for all $n \geq N$, we have $I_n = I_{n+1}$ Then I_N is a maximal element of S.

Proposition 3.3. R is Noetherian \Leftrightarrow every ideal of R is finitely generated.

Proof. (\Rightarrow) Let J be an ideal and let S_J be set of all finitely generated ideals contained in J. This set is nonempty since for any $a \in J$, the ideal $Ra \subseteq J$ is finitely generated. Let I be a maximal element of S_J . If I is not equal to J, then there is some $b \in J$ such that $b \notin I$. But $I + Ra$ is also finitely generated and strictly larger than I, so this is impossible. Thus, $I = J$ and j is finitely generated. (\Leftarrow) Let

$$
I_0 \subseteq I_1 \subseteq \cdots \subseteq I_m \subseteq \ldots,
$$

be an ascending chain of ideals. Then $\bigcup_{j=0}^{\infty} I_j$ is an ideal (easy to check) and is finitely generated, by, say, the set a_1, \ldots, a_ℓ . Each a_i is in some I_j so there is an I_N containing all of the a_i . Thus, $I_N = \bigcup_{j=0}^{\infty} I_j$ and $I_{n+1} = I_n$ for every $n \geq N$.

 \Box

Recall an ideal **p** is said to be prime if $ab \in \mathfrak{p}$ implies that either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

Definition 3.4. The *dimension* of a ring is the largest n for which there exists a chain of prime ideals

$$
\mathfrak{p}_0\subsetneq\mathfrak{p}_1\subsetneq\cdots\subsetneq\mathfrak{p}_n,
$$

where the \mathfrak{p}_i are prime ideals and $\mathfrak{p}_i \neq \mathfrak{p}_{i+1}$ (for $i = 1, \ldots, n-1$).

Not all rings are finite dimensional, e.g. $k[(x_i)_{i=1}^{\infty}]$. This ring isn't Noetherian either. But furthermore, not all Noetherian rings are finite dimensional. However, all local Noetherian rings are finite dimensional.

Now, let's define localization... Let A be a domain and let $S \subset A$ be closed under multiplication and suppose that $0 \notin S$. Then, we can form a the ring $S^{-1}A$ which is the set of fraction of the form

$$
\frac{a}{s}
$$

where $a \in A$ and $s \in S$ subject to the equivalence relation

$$
\frac{a}{s} = \frac{b}{t}
$$

if $at = bs$. It is easy to check that is well-defined, e.g. that if $at = bs$ and $a't' = b's'$ then

$$
\frac{a}{s}\frac{b}{t} = \frac{a'}{s'}\frac{b'}{t'}
$$

and

$$
\frac{a}{s} + \frac{b}{t} = \frac{a'}{s'} + \frac{b'}{t'}.
$$

Note furthermore that s/s serves as 1 and that $0/s$ serves as 0. Also there is a natural map sending A into $S^{-1}A$ by fixing $s \in S$ and sending a to as/s .

Remark 3.5. Note that we need to change things slightly when S contains zero divisors. We say that $a/s = a'/s'$ if there exists some $t \in S$ such that $tas' = ta's$.

On the other hand, when A is a domain the map $A \longrightarrow S^{-1}A$ is always injective. Since $a/1 = 0/t$ implies that $at = 0$ which implies that $a = 0$.

When **p** is a prime elements than $A \setminus \mathfrak{p}$ is multiplicatively closed set since $a, b \notin \mathfrak{p}$ implies that $ab \notin \mathfrak{p}$. This is the most important example of localization and in this case $S^{-1}A$ is written as $A_{\mathfrak{p}}$. Examples...

Example 3.6. Localizing \mathbb{Z} at the ideal (p) for p a prime number we get the set of elements of $\mathbb Q$ that can be written as a/s where s is not divisible by p.

Some more notation...people frequently write R_S rather $S^{-1}R$ simply because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.7. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in R_S .

Proof. Denote the map from R into R_s as ϕ . Every prime ideal q in R_S pulls back to a prime ideal $\phi^{-1}(\mathfrak{q})$ of R. We also see that an ideal $\mathfrak p$ in R is equal to $\phi^{-1}(\mathfrak q)$ for some $\mathfrak q$ in R_S if $\phi(\mathfrak p)$ is a prime ideal and $\phi^{-1}(\phi(\mathfrak{p})) = \mathfrak{p}$. Now, if there is some $s \in S \cap \mathfrak{p}$, then clearly $R_S \mathfrak{p} = 1$, since $\frac{1}{s}s = 1$. So it only remains to show that if **p** is a prime that doesn't intersect S, then R_s **p** is a prime ideal. It is easy to see that R_s **p** consists of all a/s for which $a \in \mathfrak{p}$ and $s \in S$. Now, suppose that

$$
\frac{x}{t}\frac{y}{t'} = \frac{a}{s}
$$

for $x, y \in R$, $t, t' \in S$ and $a/s \in R_S$. Then $xys = att'$, so $xy \in \mathfrak{p}$ (since $s \notin \mathfrak{p}$, so either x or y is in \mathfrak{p} , so either x/t or y/t' is in $R_S\mathfrak{p}$. Thus, R_S **p** is indeed a prime ideal.

Forming $S^{-1}R$ is called *localizing* R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Proposition 3.8. (Poor man's unique factorization) Let R be a Noetherian ring and let I be an ideal in R . Then I has the property that there exist (not necessarily distinct) prime ideals $(\mathfrak{p}_i)_{i=1}^n$ such that

• $\mathfrak{p}_i \supset I$ for each i; and

$$
\bullet \ \prod_{i=1}^n \mathfrak{p}_i \subseteq I.
$$

Proof. Let S be the set of ideals of R not having this property. Then $\mathcal S$ has a maximal element, call it I. We can assume I is not prime since prime ideals trivially have the desired property. Thus, there exist $a, b \notin I$ such that $ab \in I$. The ideals $I + Ra$ and $I + Rb$ are larger than I, so must have prime ideals \mathfrak{p}_i and \mathfrak{q}_j such that

$$
\prod_{i=1}^n \mathfrak{p}_i \subseteq I + Ra
$$

with $\mathfrak{p}_i \supset I + Ra \supset I$ and

$$
\prod_{i=1}^{n} \mathfrak{q}_i \subseteq I + Rb
$$

with $\mathfrak{q}_i \supset I + Rb \supset I$. Also, $(I + Ra)(I + Rb) \subseteq I$ so

$$
\prod_{i=1}^{n} \mathfrak{p}_i \prod_{i=1}^{n} \mathfrak{q}_i \subset I
$$

and *I* does have the desired property after all

and I does have the desired property after all. \Box

There is no uniqueness at all here. Let's get a very, very weak uniqueness result for for local rings.

Proposition 3.9. Let R be a local integral domain with maximal ideal m. Then $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for $n \geq 1$.

Proof. Since $\mathfrak{m}^n \neq 0$ for any n, we may apply Nakayama's lemma below to $\mathfrak m$ considered as an R -module.

Lemma 3.10. (Nakayama's lemma) Let R be a local ring with maximal ideal m and let M be a finitely generated R-module. Suppose that $\mathfrak{m}M = M$. Then $M = 0$.

Proof. The proof is similar to that of the Cayley-Hamilton theorem. Let m_1, \ldots, m_n generate M. Then mM will be the set of all sums $\sum_{n=1}^{\infty}$ $j=1$ $a_j m_j$ where $a_j \in \mathfrak{m}$. In particular, we can write

$$
1 \cdot m_i = \sum_{j=1}^n a_{ij} m_j.
$$

We form the matrix $T := I - [a_{ij}]$ as $n \times n$ matrix over A and treat as an endomorphism of $Mⁿ$ (as in Cayley-Hamilton). Then, as in Cayley-Hamilton $T(m_1, \ldots, m_n)^t = 0$ (i.e., T times the column vector with entries m_i , which means that $UT(m_1, \ldots, m_n)^t = 0$ which means that $(\det T)m_i = 0$ for each i, so $(\det T)M = 0$. Expanding out $\det T$, we note that all the a_{ij} are in \mathfrak{m} so we obtain

$$
(1n + bn-11n-1 + \cdots + b0)M = 0.
$$

Now $1 + b_{n-1} + \ldots b_0$ is not in \mathfrak{m} so it must be a unit u. Then we have $uM = 0$, so $u^{-1}uM = 0$, so $1M = 0$, so $M = 0$.