Math 430 Tom Tucker
NOTES FROM CLASS 09/04/24

Last time we were in the process of defining Noetherian rings. Re-
call...

Definition 3.1. A ring A is said to be Noetherian if it satisfies the
ascending chain condition which states that if there is a sequence of
ideals I,,, such that

Lhchchc---Cl,C...

then there is an N such that for all n > N, we have [, = [,;;1. In
other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no
larger proper ideal J containing /. Maximal ideals are usually written
as m.

Lemma 3.2. Let A be a Noetherian ring. Any subset S of ideals of A
has a mazximal element (here mazimal means that there is no strictly
larger ideal I' O I in S).

Proof. Let Iy € §. If I is not maximal in § there is a larger ideal
I; € § containing I. Similarly, if I; is not maximal there is a larger
ideal I; € S containing it and so on, so we have an ascending chain of
ideals

LChCCl,C...,
which means that there is some N such that for all n > N, we have
I, = I,,.1 Then [y is a maximal element of S. ]

Proposition 3.3. R is Noetherian < every ideal of R s finitely gen-
erated.

Proof. (=) Let J be an ideal and let S; be set of all finitely generated
ideals contained in J. This set is nonempty since for any a € J, the
ideal Ra C J is finitely generated. Let I be a maximal element of S;.
If I is not equal to J, then there is some b € J such that b ¢ I. But
I + Ra is also finitely generated and strictly larger than I, so this is
impossible. Thus, I = J and j is finitely generated.
(<) Let
Lhchc---Cl,C...,

be an ascending chain of ideals. Then U32,I; is an ideal (easy to check)
and is finitely generated, by, say, the set aq,...,a,. Each a; is in some
I; so there is an Iy containing all of the a;. Thus, Iy = U;’-‘;OIj and
I, =1, for every n > N.

O



Recall an ideal p is said to be prime if ab € p implies that either
acporbenp.

Definition 3.4. The dimension of a ring is the largest n for which
there exists a chain of prime ideals

PoC P &Sy,

where the p; are prime ideals and p; # p;q (fori=1,...,n—1).

Not all rings are finite dimensional, e.g. k[(z;)52,]. This ring isn’t
Noetherian either. But furthermore, not all Noetherian rings are finite
dimensional. However, all local Noetherian rings are finite dimensional.

Now, let’s define localization... Let A be a domain and let S C A
be closed under multiplication and suppose that 0 ¢ S. Then, we can
form a the ring S~'A which is the set of fraction of the form

a

s
where a € A and s € S subject to the equivalence relation

a b

s 1
if at = bs. It is easy to check that is well-defined, e.g. that if at = bs
and a't’ = b's’ then
ab a't
st st
a b d U

= — 4+ =,

s t s
Note furthermore that s/s serves as 1 and that 0/s serves as 0. Also
there is a natural map sending A into S~ A by fixing s € S and sending

a to as/s.

and

Remark 3.5. Note that we need to change things slightly when S con-
tains zero divisors. We say that a/s = a’/s’ if there exists some ¢t € S
such that tas’ = ta's.

On the other hand, when A is a domain the map A — S™1A is
always injective. Since a/1 = 0/t implies that at = 0 which implies
that a = 0.

When p is a prime elements than A \ p is multiplicatively closed set
since a, b ¢ p implies that ab ¢ p. This is the most important example
of localization and in this case S™'A is written as A,. Examples...

Example 3.6. Localizing Z at the ideal (p) for p a prime number we
get the set of elements of Q that can be written as a/s where s is not
divisible by p.
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Some more notation...people frequently write Rg rather S~ R simply
because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.7. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in Rg.

Proof. Denote the map from R into Rg as ¢. Every prime ideal q in
Rs pulls back to a prime ideal ¢~!(q) of R. We also see that an ideal
p in R is equal to ¢~1(q) for some q in Rg if ¢(p) is a prime ideal and
¢~ (p(p)) = p. Now, if there is some s € S N p, then clearly Rgp = 1,
since %3 = 1. So it only remains to show that if p is a prime that
doesn’t intersect S, then R p is a prime ideal. It is easy to see that
Rsp consists of all a/s for which a € p and s € S. Now, suppose that

Ty a
tt
for z,y € R, t,t' € S and a/s € Rg. Then zys = att’, so xy € p (since

s & p, so either z or y is in p, so either =/t or y/t’ is in Rgp. Thus,
Rgp is indeed a prime ideal. 0

Forming S™'R is called localizing R. We define a local ring to be a
ring with only one maximal ideal, e.g. Z, is a local ring.

Proposition 3.8. (Poor man’s unique factorization) Let R be a Noe-
therian ring and let I be an ideal in R. Then I has the property that
there exist (not necessarily distinct) prime ideals (p;)_, such that

e p;, DI for each i; and

n

e JIpiC 1.

i=1

Proof. Let S be the set of ideals of R not having this property. Then
S has a maximal element, call it I. We can assume [ is not prime
since prime ideals trivially have the desired property. Thus, there exist
a,b ¢ I such that ab € I. The ideals I + Ra and I + Rb are larger than
I, so must have prime ideals p; and q; such that

ﬁpi CI+ Ra
i=1
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with p;, D I + Ra D I and
[[a:ici+nro
=1

with q; O T+ Rb D I. Also, (I + Ra)(I + Rb) C I so

[Ipi[Jaict
i=1 =1

and I does have the desired property after all. U

There is no uniqueness at all here. Let’s get a very, very weak unique-
ness result for for local rings.

Proposition 3.9. Let R be a local integral domain with mazimal ideal
m. Then m"™ # m"*! forn > 1.

Proof. Since m"™ # 0 for any n, we may apply Nakayama’s lemma below
to m considered as an R-module. U

Lemma 3.10. (Nakayama’s lemma) Let R be a local ring with mazi-
mal ideal m and let M be a finitely generated R-module. Suppose that
mM = M. Then M = 0.

Proof. The proof is similar to that of the Cayley-Hamilton theorem.
Let mq,...,m, generate M. Then mM will be the set of all sums

n
> a;m; where a; € m. In particular, we can write

7=1
n
1- m; = E aijmj.
Jj=1

We form the matrix 7" := I — [a;;] as n X n matrix over A and treat as
an endomorphism of M™ (as in Cayley-Hamilton). Then, as in Cayley-
Hamilton 7'(myq,...,my,)" = 0 (i.e., T times the column vector with
entries m;), which means that UT(my, ..., m,)" = 0 which means that
(det T'Ym; = 0 for each i, so (det )M = 0. Expanding out det T, we
note that all the a;; are in m so we obtain

(1" 4+ by 1" o £ bg)M = 0.

Now 1+ b,,—1 +...bg is not in m so it must be a unit u. Then we have
uM =0, so v 'uM =0, so 1M =0, so M = 0. O



