
Math 430 Tom Tucker
NOTES FROM CLASS 09/04/24

Last time we were in the process of defining Noetherian rings. Re-
call...

Definition 3.1. A ring A is said to be Noetherian if it satisfies the
ascending chain condition which states that if there is a sequence of
ideals Im such that

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ . . .

then there is an N such that for all n ≥ N , we have In = In+1. In
other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no
larger proper ideal J containing I. Maximal ideals are usually written
as m.

Lemma 3.2. Let A be a Noetherian ring. Any subset S of ideals of A
has a maximal element (here maximal means that there is no strictly
larger ideal I ′ ⊃ I in S).

Proof. Let I0 ∈ S. If I is not maximal in S there is a larger ideal
I1 ∈ S containing I0. Similarly, if I1 is not maximal there is a larger
ideal I2 ∈ S containing it and so on, so we have an ascending chain of
ideals

I0 ⊆ I1 ⊆ · · · ⊆ Im ⊆ . . . ,

which means that there is some N such that for all n ≥ N , we have
In = In+1 Then IN is a maximal element of S. �

Proposition 3.3. R is Noetherian ⇔ every ideal of R is finitely gen-
erated.

Proof. (⇒) Let J be an ideal and let SJ be set of all finitely generated
ideals contained in J . This set is nonempty since for any a ∈ J , the
ideal Ra ⊆ J is finitely generated. Let I be a maximal element of SJ .
If I is not equal to J , then there is some b ∈ J such that b /∈ I. But
I + Ra is also finitely generated and strictly larger than I, so this is
impossible. Thus, I = J and j is finitely generated.
(⇐) Let

I0 ⊆ I1 ⊆ · · · ⊆ Im ⊆ . . . ,

be an ascending chain of ideals. Then ∪∞j=0Ij is an ideal (easy to check)
and is finitely generated, by, say, the set a1, . . . , a`. Each ai is in some
Ij so there is an IN containing all of the ai. Thus, IN = ∪∞j=0Ij and
In+1 = In for every n ≥ N .
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Recall an ideal p is said to be prime if ab ∈ p implies that either
a ∈ p or b ∈ p.

Definition 3.4. The dimension of a ring is the largest n for which
there exists a chain of prime ideals

p0 ( p1 ( · · · ( pn,

where the pi are prime ideals and pi 6= pi+1 (for i = 1, . . . , n− 1).

Not all rings are finite dimensional, e.g. k[(xi)
∞
i=1]. This ring isn’t

Noetherian either. But furthermore, not all Noetherian rings are finite
dimensional. However, all local Noetherian rings are finite dimensional.

Now, let’s define localization... Let A be a domain and let S ⊂ A
be closed under multiplication and suppose that 0 /∈ S. Then, we can
form a the ring S−1A which is the set of fraction of the form

a

s
where a ∈ A and s ∈ S subject to the equivalence relation

a

s
=
b

t
if at = bs. It is easy to check that is well-defined, e.g. that if at = bs
and a′t′ = b′s′ then

a

s

b

t
=
a′

s′
b′

t′

and
a

s
+
b

t
=
a′

s′
+
b′

t′
.

Note furthermore that s/s serves as 1 and that 0/s serves as 0. Also
there is a natural map sending A into S−1A by fixing s ∈ S and sending
a to as/s.

Remark 3.5. Note that we need to change things slightly when S con-
tains zero divisors. We say that a/s = a′/s′ if there exists some t ∈ S
such that tas′ = ta′s.

On the other hand, when A is a domain the map A −→ S−1A is
always injective. Since a/1 = 0/t implies that at = 0 which implies
that a = 0.

When p is a prime elements than A \ p is multiplicatively closed set
since a, b /∈ p implies that ab /∈ p. This is the most important example
of localization and in this case S−1A is written as Ap. Examples...

Example 3.6. Localizing Z at the ideal (p) for p a prime number we
get the set of elements of Q that can be written as a/s where s is not
divisible by p.
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Some more notation...people frequently write RS rather S−1R simply
because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on
prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.7. Let R be an integral domain. Let S be a multiplicative
subset of R that does not contain 0. There is a bijection between the
primes in R that do not intersect S and the primes in RS.

Proof. Denote the map from R into RS as φ. Every prime ideal q in
RS pulls back to a prime ideal φ−1(q) of R. We also see that an ideal
p in R is equal to φ−1(q) for some q in RS if φ(p) is a prime ideal and
φ−1(φ(p)) = p. Now, if there is some s ∈ S ∩ p, then clearly RSp = 1,
since 1

s
s = 1. So it only remains to show that if p is a prime that

doesn’t intersect S, then Rsp is a prime ideal. It is easy to see that
Rsp consists of all a/s for which a ∈ p and s ∈ S. Now, suppose that

x

t

y

t′
=
a

s

for x, y ∈ R, t, t′ ∈ S and a/s ∈ RS. Then xys = att′, so xy ∈ p (since
s /∈ p, so either x or y is in p, so either x/t or y/t′ is in RSp. Thus,
RSp is indeed a prime ideal. �

Forming S−1R is called localizing R. We define a local ring to be a
ring with only one maximal ideal, e.g. Z(p) is a local ring.

Proposition 3.8. (Poor man’s unique factorization) Let R be a Noe-
therian ring and let I be an ideal in R. Then I has the property that
there exist (not necessarily distinct) prime ideals (pi)

n
i=1 such that

• pi ⊃ I for each i; and

•
n∏

i=1

pi ⊆ I.

Proof. Let S be the set of ideals of R not having this property. Then
S has a maximal element, call it I. We can assume I is not prime
since prime ideals trivially have the desired property. Thus, there exist
a, b /∈ I such that ab ∈ I. The ideals I +Ra and I +Rb are larger than
I, so must have prime ideals pi and qj such that

n∏
i=1

pi ⊆ I +Ra
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with pi ⊃ I +Ra ⊃ I and
n∏

i=1

qi ⊆ I +Rb

with qi ⊃ I +Rb ⊃ I. Also, (I +Ra)(I +Rb) ⊆ I so
n∏

i=1

pi

n∏
i=1

qi ⊂ I

and I does have the desired property after all. �

There is no uniqueness at all here. Let’s get a very, very weak unique-
ness result for for local rings.

Proposition 3.9. Let R be a local integral domain with maximal ideal
m. Then mn 6= mn+1 for n ≥ 1.

Proof. Since mn 6= 0 for any n, we may apply Nakayama’s lemma below
to m considered as an R-module. �

Lemma 3.10. (Nakayama’s lemma) Let R be a local ring with maxi-
mal ideal m and let M be a finitely generated R-module. Suppose that
mM = M . Then M = 0.

Proof. The proof is similar to that of the Cayley-Hamilton theorem.
Let m1, . . . ,mn generate M . Then mM will be the set of all sums
n∑

j=1

ajmj where aj ∈ m. In particular, we can write

1 ·mi =
n∑

j=1

aijmj.

We form the matrix T := I − [aij] as n× n matrix over A and treat as
an endomorphism of Mn (as in Cayley-Hamilton). Then, as in Cayley-
Hamilton T (m1, . . . ,mn)t = 0 (i.e., T times the column vector with
entries mi), which means that UT (m1, . . . ,mn)t = 0 which means that
(detT )mi = 0 for each i, so (detT )M = 0. Expanding out detT , we
note that all the aij are in m so we obtain

(1n + bn−11
n−1 + · · ·+ b0)M = 0.

Now 1 + bn−1 + . . . b0 is not in m so it must be a unit u. Then we have
uM = 0, so u−1uM = 0, so 1M = 0, so M = 0. �


