
Math 430 Tom Tucker
NOTES FROM CLASS 08/30/24

First a few quick notes:
One quick note on unique factorization. More on this later. In what

follows, A will also be an integral domain. We say two elements a, b ∈ A
are associates if Aa = Ab.

Definition 2.1. (We will almost never use this definition.) Let A be
an integral domain. We say that a non-unit a ∈ A is irreducible if if
a = bc means that b or c is a unit.

Definition 2.2. Let A be an integral domain. We say that a non-unit
π ∈ A is prime if π | bc implies π | b or π | c.

Note that a prime is irreducible, since if π is prime and π = bc,
then either π | b or π | c. Suppose WLOG that π | b. Then we have
bc = wπc = π so wc = 1 and thus c is a unit. In general, however,
an irreducible need not be prime. Take

√
6 in the ring Z[

√
−6], for

example.
Now suppose that every element of A has unique factorization into

irreducibles, which means that for any a ∈ A factors into irreducible
elements and if furthermore, if we have

ub1 · · · bm = wc1 · · · cn
for units u,w and irreducibles, b1, . . . , bm, c1 . . . , cn, then we have m = n
and permutation σ of {1, . . . ,m} such that for each ai, the element bσ(i)
is an associate of ai. Note that if A has unique factorization, then every
irreducible element of A is prime since if a | bc, then some associate of
a appears in the factorization of b or c and thus a divides b or c.

Thus, in a UFD, everything factors into primes.
Now, a quick note about how to tell when something is integral by

looking at its minimal polynomial.

Proposition 2.3. (Prop. 2.5 from Janusz) Let R be a domain with
field of fractions K and let L be an algebraic extension of K. Let b ∈ L
and let f(X) be the minimal polynomial for b that has coefficients in K
and leading coefficient 1. Then, the coefficients of f are integral over
R whenever b is integral over R. In particular, if R is integrally closed
in K and b is integral over R, then the coefficients of f are in R.

Proof. Suppose that b is integral over R. We can write

f(X) = (X − b1)(X − b2) · · · (X − bn),

by extending L to some field E over which f splits. Note that any
polynomial satisfied by b is divisible by f in K[X], so if b satisfies an
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integral polynomial with coefficients in R, so do all of the other bi.
Hence, if b is integral then so are all of the bi. The coefficients of f are
all in the ring R[b1, . . . , bn], so this also means that the coefficients of
f are integral over R as desired (see Corollary 2.6) Now, since these
coefficients are also in K, they are actually in R if R is integrally
closed. �

So, to check if something is integral, all we have to do is check its
minimal polynomial. Example, let α =

√
11/7. Its minimal polynomial

is X2 − 11/49 which isn’t integral over Z, so we’re done.

Theorem 2.4. (Cayley-Hamilton) Let A ⊆ B. Suppose that M is a
finitely generated A-module with generators m1, . . . ,mn. Suppose that
that M is also a faithful A[b]-module (this means the only element that
annihilates all of M is 0) and that b acts on the generators mi in the
following way

(1) bmi =
n∑
j=1

aijmj.

Then b satisfies the equation

det


b− a11 −a12 · · · −a1n
−a21 b− a22 · · · −a2n
· · · · · · · · · · · ·
−an2 −an1 · · · b− ann

 = 0.

Proof. Let T be the matrix bI − [aij]. The theorem then says that
detT = 0. Notice that we can consider T as an endomorphism of Mn

by writing


b− a11 −a12 · · · −a1n
−a21 b− a22 · · · −a2n
· · · · · · · · · · · ·
−an2 −an1 · · · b− ann




x1
·
·
xn

 =


bx1 −

n∑
j=1

a1jxj

·
·
bxn −

n∑
j=1

anjxj


where the xi are elements of M . Let (x1, . . . , xn) be (m1, . . . ,mn), we
obtain

b− a11 −a12 · · · −a1n
−a21 b− a22 · · · −a2n
· · · · · · · · · · · ·
−an2 −an1 · · · b− ann




m1

·
·
mn

 =


bm1 −

n∑
j=1

a1jmj

·
·
bmn −

n∑
j=1

anjmj

 =


0
·
·
0
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by equation (1). Now, recall from linear algebra (exercise) that there
is a matrix U , called the adjoint of T , for which UT = (detT )I. We
obtain

detT 0 · · · 0
0 detT · · · 0
· · · · · · · · · · · ·
0 0 0 detT




m1

·
·
mn

 =


(detT )m1

·
·
(detT )mn

 =


0
·
·
0


so (detT )mi = 0 for each mi. Hence (detT ) = 0, since (detT ) ∈ A[b]
and A[b] acts faithfully on M . �

Corollary 2.5. Let A ⊆ B and let b ∈ B. If A[b] ⊆ B′ ⊆ B for a ring
B′ that is finitely generated as an A-module, then b is integral over A.

Proof. Since b ∈ B′, multiplication by b sends B′ to B′. Moreover,
the resulting map is A-linear (by distributivity of multiplication). The
action of A[b] on B′ must be faithful since c · 1 = 0 implies c = 0.

Let m1, . . . ,mn generate B′ as an A-module. Then, for each i with
1 ≤ i ≤ n, we can write

bxi =
n∑
j=1

aijxj.

Clearly, the equation

det


b− a11 −a21 · · · −an1
−a12 b− a22 · · · −an2
· · · · · · · · · · · ·
−a1n −a2n · · · b− ann

 = 0

is integral. �

For now, let’s note the following corollary.

Corollary 2.6. Let A ⊆ B. Then the set of all elements in B that are
integral over A is a ring.

Proof. We need only show that the elements in B that are integral over
A forms a ring. If α and β are integral over A, then A[α, β] is finitely
generated as an A-module. Hence, −α, α + β, and αβ are all integral
over A since they are contained in A[α, β], by the Cayley-Hamilton
theorem above. �

The following is immediate.

Corollary 2.7. Let K be an extension of Q. Then the set of all ele-
ments in K that are integral over Z is a ring.
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Again let A ⊆ B. The set B′ of elements of B that are integral over
A is a ring. We call this ring B′ the integral closure of A in B.

Definition 2.8. Let K be a number field (a finite extension of Q).
The ring of integers of K is the integral closure of Z in K. We denote
is as OK .

Ask if people have seen localization.

Definition 2.9. We say that a domain B is integrally closed if it is
integrally closed in its field of fractions.

Proposition 2.10. Let A ⊆ B, where A and B are domains. The ring
B is integrally closed over A if and only if B is integrally closed in its
field of fractions.

Proof. Exercise. �

Example 2.11. Any unique factorization domain is integrally closed.
(Exercise.)

Let’s do a preview of what properties we want rings of integers to
have. First let’s recall some features of Z:

(1) Z is Noetherian.

(2) Z is 1-dimensional.

(3) Z is a unique factorization domain.

(4) Z is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.12. A ring R is Noetherian if every ideal is finitely gen-
erated as an R-module. Equivalently, R is if every ascending chain of
ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are
often equivalent in the situations we examine.

The rings OK will have the properties that

(1) OK is Noetherian.

(2) OK is 1-dimensional.

(3) OK has unique factorization for ideals.
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(4) OK is locally a principal ideal domain.

(5) It is possible that OK is not a unique factorization domain and
that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over Z will
be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem
which we will eventually prove.

We used the work “locally” above. Let’s define it.


