Math 430 Tom Tucker
NOTES FROM CLASS 08/30/24

First a few quick notes:

One quick note on unique factorization. More on this later. In what
follows, A will also be an integral domain. We say two elements a,b € A
are associates if Aa = Ab.

Definition 2.1. (We will almost never use this definition.) Let A be
an integral domain. We say that a non-unit a € A is irreducible if if
a = bc means that b or c is a unit.

Definition 2.2. Let A be an integral domain. We say that a non-unit
m € Ais prime if 7 | be implies 7 | b or 7 | c.

Note that a prime is irreducible, since if 7 is prime and © = bc,
then either 7 | b or 7 | ¢. Suppose WLOG that 7 | b. Then we have
bc = wre = m so we = 1 and thus ¢ is a unit. In general, however,
an irreducible need not be prime. Take v/6 in the ring Z[/—6], for
example.

Now suppose that every element of A has unique factorization into
irreducibles, which means that for any a € A factors into irreducible
elements and if furthermore, if we have

uby - by = wey -y

for units u, w and irreducibles, by, ..., b,,,c1 ..., c,, then we have m = n
and permutation o of {1,...,m} such that for each a;, the element b,
is an associate of a;. Note that if A has unique factorization, then every
irreducible element of A is prime since if a | be, then some associate of
a appears in the factorization of b or ¢ and thus a divides b or c.

Thus, in a UFD, everything factors into primes.

Now, a quick note about how to tell when something is integral by
looking at its minimal polynomial.

Proposition 2.3. (Prop. 2.5 from Janusz) Let R be a domain with
field of fractions K and let L be an algebraic extension of K. Letb € L
and let f(X) be the minimal polynomial for b that has coefficients in K
and leading coefficient 1. Then, the coefficients of f are integral over
R whenever b is integral over R. In particular, if R is integrally closed
in K and b is integral over R, then the coefficients of f are in R.

Proof. Suppose that b is integral over R. We can write
JX) = (X =b)(X = ba) - (X = bn),

by extending L to some field F over which f splits. Note that any
polynomial satisfied by b is divisible by f in K[X], so if b satisfies an
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integral polynomial with coefficients in R, so do all of the other b;.
Hence, if b is integral then so are all of the b;. The coefficients of f are
all in the ring R[by,...,b,], so this also means that the coefficients of
f are integral over R as desired (see Corollary Now, since these
coefficients are also in K, they are actually in R if R is integrally
closed. U

So, to check if something is integral, all we have to do is check its
minimal polynomial. Example, let & = 1/11/7. Its minimal polynomial
is X? — 11/49 which isn’t integral over Z, so we're done.

Theorem 2.4. (Cayley-Hamilton) Let A C B. Suppose that M is a
finitely generated A-module with generators my, ..., m,. Suppose that
that M is also a faithful A[b]-module (this means the only element that
annihilates all of M is 0) and that b acts on the generators m; in the
following way

(1) bmz = Zaijmj.
j=1

Then b satisfies the equation

b—an —a crr —A1p
—Q21 b—ax -+ —a

det " =0.
—Qp2 —Qp1 e b — Qpp

Proof. Let T be the matrix b — [a;;]. The theorem then says that
det T" = 0. Notice that we can consider T as an endomorphism of M"
by writing

n
bry — Y ay;x;
=1

b—ayn —ap R ¢ 1) a1
—a21 b—ax - —ag, o
—a —a - b—a x -
n2 nl nn n bl’n _ Z AnjTj
Jj=1
where the xz; are elements of M. Let (z1,...,x,) be (mq,...,my,), we
obtain
n
bmy — 3 aymy
b—an —a Tt —A1p ma j=1
—a21 b—ax -+ —ag o
—Qp2 —Qp1 e b — Ann my

n
by, — > anjm;
j=1
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by equation . Now, recall from linear algebra (exercise) that there
is a matrix U, called the adjoint of T, for which UT = (detT)I. We
obtain

detT 0 - 0 mi (det T)m1 0

0 detT - 0 : R e

0 0 0 detT m, (det T)m, 0
so (det T')ym; = 0 for each m;. Hence (detT") = 0, since (detT') € A[b]
and A[b] acts faithfully on M. O

Corollary 2.5. Let AC B and letb € B. If A[b] C B' C B for a ring
B’ that is finitely generated as an A-module, then b is integral over A.

Proof. Since b € B’, multiplication by b sends B’ to B’. Moreover,
the resulting map is A-linear (by distributivity of multiplication). The
action of A[b] on B’ must be faithful since ¢- 1 = 0 implies ¢ = 0.

Let myq, ..., m, generate B’ as an A-module. Then, for each i with
1 <1 < n, we can write

n
bl’i: E Q5.
J=1

Clearly, the equation

b—an —ag o Tam
det —aj2 b—axn - —ap —0
—A1n —Aan RS Qpp
is integral. O

For now, let’s note the following corollary.

Corollary 2.6. Let A C B. Then the set of all elements in B that are
integral over A is a ring.

Proof. We need only show that the elements in B that are integral over
A forms a ring. If @ and 3 are integral over A, then Alx, /3] is finitely
generated as an A-module. Hence, —a, a + 3, and af are all integral
over A since they are contained in Ala, 5], by the Cayley-Hamilton
theorem above. 0

The following is immediate.

Corollary 2.7. Let K be an extension of Q. Then the set of all ele-
ments in K that are integral over Z is a ring.



Again let A C B. The set B’ of elements of B that are integral over
A is a ring. We call this ring B’ the integral closure of A in B.

Definition 2.8. Let K be a number field (a finite extension of Q).
The ring of integers of K is the integral closure of Z in K. We denote
is as Og.

Ask if people have seen localization.

Definition 2.9. We say that a domain B is integrally closed if it is
integrally closed in its field of fractions.

Proposition 2.10. Let A C B, where A and B are domains. The ring
B s integrally closed over A if and only if B is integrally closed in its
field of fractions.

Proof. Exercise. 0

Example 2.11. Any unique factorization domain is integrally closed.
(Exercise.)

Let’s do a preview of what properties we want rings of integers to
have. First let’s recall some features of Z:

(1) Z is Noetherian.

(2) Z is 1-dimensional.

(3) Z is a unique factorization domain.
(4) Z is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.12. A ring R is Noetherian if every ideal is finitely gen-
erated as an R-module. Equivalently, R is if every ascending chain of
ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are
often equivalent in the situations we examine.
The rings O will have the properties that

(1) Ok is Noetherian.
(2) O is 1-dimensional.

(3) Ok has unique factorization for ideals.



(4) Ok is locally a principal ideal domain.

(5) It is possible that Ok is not a unique factorization domain and

that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over Z will
be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem
which we will eventually prove.

We used the work “locally” above. Let’s define it.



