
Math 430 Tom Tucker
NOTES FROM CLASS 08/26/24

Main object of study in this class will be rings like Z[i] ⊂ Q[i]. Let’s
start with an example, using the ring Z[

√
−19]...

We will show that if the ring Z[
√
−19] had all the same properties

that Z has, then the equation x2 + 19 = y3 would have no integer
solutions x and y. Suppose we did have such an integer solution x, y ∈
Z. Then we’d have (x+

√
−19)(x−

√
−19) = y3.

We can show that (x+
√
−19) and (x−

√
−19) have no common prime

divisors (recall notion of divisor). Let’s recall the idea of primality from
the integers. An integer p is prime if p | ab implies that p | a or p | b. We
can use this same notion in any ring R: we say that π is prime if π | ab
implies that p | a or p | b. Suppose that π divided both (x+

√
−19) and

(x−
√
−19). Then π divides the difference of the two which is 2

√
−19.

This would mean that π divides either 2 or
√
−19. This in turn would

mean that either 2 or 19 divides (x+
√
−19)(x−

√
−19), which means

that 2 or 19 divides y. But this is impossible, since 193 cannot divide
x2 + 19, nor can 23 divide x2 + 19. The latter follows from looking at
the equation x2 + 19 modulo 8.

Thus, (x +
√
−19) and (x −

√
−19) have no common prime factor.

Thus, we see that if π divides x2+19, then π3 divides either (x+
√
−19)

or (x−
√
−19), since π cannot divide both. This follows from factorizing

the two numbers as we have assumed we can.
Hence, we see that (x +

√
−19) must be a perfect cube in Z[

√
−19]

(note that Z[
√
−19] has no units except 1 and -1), so we can write

(u+ v
√
−19)3 = x+

√
−19

so
x = u3 − 57uv2

and
1 = 3u2v − 19v3.

The latter equation gives v(3u2 − 19v2) = 1, so v is 1 or −1. If
v = 1 we obtain 3u2 − 19 = 1, so 3u2 = 20. If v = −1, we obtain
3u2 − 19 = −1, so 3u2 = 18. Either way, there is no such integer u, so
there was no solution to

x2 + 19 = y3.

But there is a solution
182 + 19 = 73.

So something is wrong. The ring Z[
√
−19] is different from Z in some

way.
1



2

What went wrong? We don’t have unique factorization, so the argu-
ment about ab being a perfect cube forcing a and b to be perfect cubes
isn’t correct.

We’ll be working with rings R that are similar to Z[
√
−19].

• Is R a unique factorization domain?
• If not, how badly does it fail to be a unique factorization do-

main?
• What is “right” ring to work with for questions like this?

Definition 1.1. An element π of a ring A is said to be prime if π | ab
means π | a or π | b.

Definition 1.2. A domain R is said to be a unique factorization do-
main if every a ∈ R that is not a unit can be written as

a = πe1
1 · · · πen

n

(where all of the πi are prime)

Example 1.3. The integers Z are a unique factorization domain.

Let’s start answering the first question. A partial answer is that the
good subring B will be finitely generated as a module over Z. This
means that all of the elements in it will be integral over Z.

For the rest of the class A and B are rings Recall that a monic
equation over A is an equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

Definition 1.4. Let A ⊂ B. An element b ∈ B is said to be integral
over A if b satisfies an equation of the form

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0,

where the ai ∈ A (i.e., if it satisfies an integral equation over A).

The rings we work with will be subrings of K, where K is a number
field (a finite extension of Q). These rings will be integral over Z.

It turns out that a key property for these rings is that they be in-
tegrally closed in their field of fractions. The ring Z[

√
−19] is not, it

turns out, because 1+
√
−19
2

is integral over Z.
NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH

MULTIPLICATIVE IDENTITY 1 (1 · a = a for every a ∈ A, where A
is the ring) AND ADDITIVE IDENTITY 0 (0 + a = a for every a ∈ A
where A is the ring)

Definition 1.5. A ring R is called a principal ideal domain if for any
ideal I ⊂ R there is an element a ∈ I, such that I = Ra.
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Later we’ll see that for the rings we work with in this class, principal
ideal domains and unique factorization domains are the same thing.

Proposition 1.6 (Easy). Let A ⊂ B. Then b is integral over A ⇔
A[b] is finitely generated as an A-module.

Proof. (⇒) Writing

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0,

we see that bn is contained in theA-module generated by {1, b, . . . , bn−1}.
Similarly, by induction on r > 0, we see that bn+r is contained in the
A-module generated by {1, b, . . . , bn−1}, since

bn+r = −(an−1b
n−1 + · · ·+ a1b+ a0)b

r,

and is therefore contained inA-module generated by {1, b, . . . , bn+(r−1)}.

(⇐) Let

{
Ni∑
j=1

aijb
j

}S

i=1

generate A[b]. Then for M larger than the

largest Ni, the element bM can be written as A-linear combination of
lower powers of b. This yields an integral polynomial over A satisfied
by b. �

Definition 1.7. We say that A ⊂ B is integral, or that B is integral
over A if every b ∈ B is integral over A.

Corollary 1.8. If A ⊂ B is integral and B ⊂ C is integral, then
A ⊂ C is integral.

Proof. Exercise. �


