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Clearly, nfn(ak,W.) = Ej 11{xj=ok} = Bin(n,pk). In particular, it has
mean npk and variance npk(1-Pk) < npk. Thus, by the Chebyshev inequal-
ity,

(6.57) 1 - npk
1

7rn (e) < V' =

k=1

The theorem follows.

6.3. The Glivenko-Cantelli Theorem. A histogram is a random dis-
crete probability distribution; it depends on {X;} 1, and assigns probabil-
ity pn(x) to any point x E R, where pn(x) is the fraction of the data that
is equal to x. Its cumulative distribution function is called the empirical
distribution function, and defined more formally as follows.

Definition 6.28. If {Xj}i_1 are i.i.d. random variables all with distribution
function F, then their empirical distribution function Fn is

1
(6.58) Fn(x,w) = E 1{xk<x}(w) dx E R,w E Q.

k=1

Thus, we can view x ' Fn(x, ) as a random (cumulative) distribution
function. As we did with other sorts of random variables, we suppress the
dependence on the w variable, and write Fn(x) in place of Fn(x , w).

The following is due to Glivenko (1933) and Cantelli (1933b). In data-
analytic terms, this theorem presents a uniform approximation to an un-
known distribution function F based on a random sample from this distri-
bution.

Theorem 6.29. limn-. SupXER I Fn(x) - F(x)I = 0 a.s.

Proof. Since Fn and F are right-continuous,

(6.59) sup IFn(x) - F(x)I = sup IFn(x) - F(x)I.
xER xEQ

Thus, supXER I Fn(x) - F(x)I is a random variable.
Fix x E R and note that nFn(x) = Bin(n, F(x)). By the strong law of

large numbers (p. 73), for any e > 0, n > 1, and x E R,

(6.60) IFn(x) - F(x)I < e for all but finitely many n's, a.s.

Recall that: (i) F is non-decreasing; (ii) F is right-continuous; (iii)
F(oo) = 1; and (iv) F(-oo) = 0. Therefore, we can find -oo < xo < . . . <
x,n < oo such that: F(xo) < e; F(x,n) > 1 - e; and

(6.61) sup IF(x) - F(xi-1)I < e dj = 1,...,m.
X,_1<x<xj
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According to (6.60),

(6.62) max IFF(xj) - F(xj)I e for all but finitely many n's, a.s.
O<j<m -

Hence follows that if x E [xj_1,xj) for some 1 <_ j < m, then with proba-
bility one the following holds for all sufficiently large integers n:

(663)
Fn(x) < FF(xi) < F(xj) + e; and
F(xj-1) C F,,(xj-1) + E < F,,(x) + e.

By (6.61), F(xj) < F(xj_1) + E. Since F is non-decreasing it follows that
with probability one,

(6.64) sup IF. (x) - F(x) I < 2e for all but finitely many n's.
Sp <X <Xm

Choose and fix n large enough that the previous inequality is satisfied. If
x > x,,,, then F(x) > F(x,,,) > 1 - e and F,,(x) > e > 1 - 2e.
Therefore,

(6.65) I Fn(x) - F(x)I < 11 - F(x)I + 11 - 3e ' > x,n.

Similarly, if x < xo, then IF(x) - Fn(x)I < F(xo) + Fn(xo) < 3e. Conse-
quently, with probability one,

(6.66) sup I FF(x) - F(x)I < 3E for all but finitely many n's.
rER

This proves the theorem.

6.4. The Erdos Bound on Ramsey Numbers. Let us begin with a
definition or two from graph theory.

Definition 6.30. The complete graph Km on m vertices is a collection of
m distinct vertices any two of which are connected by a unique edge. The
nth (diagonal) Ramsey number Rn is the smallest integer N such that any
bi-chromatic coloring of the edges of KN yields a Kn C KN whose edges are
all of the same color.

To understand this definition suppose Rn = N. Then, no matter how
we color the edges of KN using only the colors red and blue, somewhere
inside KN there exists a K whose edges are either all blue or all red, and
N is the smallest such value. It is possible to check that R2 = 3 and R3 = 6,
for example.

Ramsey (1930) introduced these and other Ramsey numbers to discuss
ways of checking the consistency of a logical formula. See also Skolem (1933)
and Erdos and Szekeres (1935).

As a key step in his proofs Ramsey proved that R,, < oo for all n > 1.
Evidently, Rn - oo as n - oo; in fact, it is obvious that Rn > n. The
following theorem of Erdos (1948) presents a much better lower bound.


