GRAPIN THEORY

FOR NTDS!

CONTACT

JOEL DAVID HAMKINS

JHAMKINS@GC.CVNY, EDU

JDH. HAMKINS.ORG

WITH ANY QUESTIONS

ANOTHER 3D SOLID:

A GRAPH IS A
COLLECTION OF VERTICES
JOINED BY EDGES.

THIS GRAPH HAS

5 VERTICES

7 EDGES AND IT DIVIDES THE PLANE INTO

4 REGIONS

THE MATHEMATICIAN

LEONHARD EULER

NOTICED SOMETHING PECULIAR

WHEN HE CALCULATED:

THIS NUMBER IS
NOW KNOWN AS THE
EULER CHARACTERISTIC.

LET'S CALCULATE IT!

VERTICES ____

EDGES ____

REGIONS ___

REMEMBER TO COUNT
THE OUTSIDE
REGION!

V E R ~

DO WE ALWAYS GET 2? LET'S TRY SOME EXTREME CASES:

LET'S TRY THIS GRAPH: TRY IT YOURSELF!

MY GRAPH:

THIS GRAPH IS NOT CONNECTED.

WE CAN CONNECT THE

TWO COMPONENTS BY ADDING

AN EDGE.

CONCLUSION:

EVERY CONNECTED
PLANAR GRAPH
HAS

$$V - E + R = 2.$$

HOW ABOUT THIS GRAPH?

DID IT WORK!

IN THIS GRAPH, THE DIAGONAL EDGES CROSS. LET'S FIX THAT.

NOW IT WORKS!

A PLANAR GRAPH CAN BE

DRAWN WITHOUT EDGES CROSSING.

FOR A CONNECTED PLANAR GRAPH, IS THE EULER CHARACTERISTIC ALWAYS 2? YES!

. IT STARTS OUT TRUE

ONE VERTEX
NO EDGES
ONE REGION

• IT STAYS TRUE WHEN WE ADD A CONNECTED VERTEX.

BEFORE

AFTER

ONE NEW VERTEX

V-E+R

VERTICES & EDGES BALANCE EACH OTHER

• IT STAYS TRUE WHEN WE CUT A REGION WITH A NEW EDGE.

BEFORE

AFTER

ONE NEW EDGE

ONE EXTRA

V-E+R

EDGES & REGIONS BALANCE

CAN YOU DRAW A
3D SOLID?
MY SOLID:

LET'S CONSIDER THE SURFACES OF SOME THREE-DIMENSIONAL SOLIDS.

CUBE

WE CALL THEM "FACES"

INSTEAD OF "REGIONS".

TRIANGULAR PRISM

TETRAHEDRON

PYRAMID (SQUARE BASE)

OCTAHEDRON

