Introductions and Early Motivation

Course Website: https://courses.math.rochester.edu/current/248
Office Location: Hylan 711
Office Hours: TBD
Book: Introduction to Graph Theory (2nd Edition) - Douglas B West

Questions about Student Backgrounds and Interest: (answers to be submitted to me)

- What are your names and what’s a fun fact about you?
- Which of these topics have you studied in the past/feel comfortable with the basics of?

<table>
<thead>
<tr>
<th>Math</th>
<th>Linear algebra, Set Theory, Combinatorics, Probability, Proof Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Basic programming, algorithms or data structures</td>
</tr>
</tbody>
</table>

- What are your main topics of interest? What subjects motivate your interest most/what would you like to get out of this class?

Idea:

Graphs provide a mathematical way to encode the idea of adjacency

Example: (Königsberg Bridge Problem)

Can one cross all seven bridges in Königsberg without crossing any of them twice and end up back where they started?

![Figure 98. Geographic Map: The Königsberg Bridges.](image-url)
Example: (Biological, Ecological, Chemical Networks)

- How robust is a food web to the extinction of a single species?
- Which stages of a complex chemical process are rate-limiting?
- Given a large complicated system with many parts (many species, many chemical compounds, many proteins, etc.) how can we measure the complexity of the structure in a rigorous way?

Example: (Computational and Algorithmic Questions)

- How can we mathematize the idea of computation?
How can we encode the intuitive idea of a network in a way computers can effectively process?

Definition:

A graph G is a triple consisting of
- a vertex set V or $V(G)$
- an edge set E or $E(G)$
- a relation from E to V associating each edge to either one or two vertices (called endpoints)

We will often write $G = (V, E)$ for convenient shorthand

Note:

One may wish to exclude the null graph with $V = \emptyset$ from consideration.

Review as Necessary:
- Basic set theory
 - equality of sets
 - set notation
 - empty set
 - subsets
 - cardinality
 - union, intersection, complement
 - disjointness of sets, partitions of sets
 - Cartesian product and tuples
 - relations, equivalence relations, equivalence classes
 - basic modular arithmetic as an example of the previous
• Proof theory
 ○ What is a proposition
 ○ conditional statements
 ○ contrapositives of statements
 ○ logical quantifiers, basic structure of proofs of them, negation of quantifiers
 ○ Direct proof, contrapositive proof, proof by contradiction
 ○ Induction
 ○ Recurrence relations

• Functions
 ○ Functions as mappings from domain to codomain
 ○ composition of functions
 ○ injectivity and surjectivity
 ○ bijections and inverse functions
 ○ growth rates of basic functions (bounded functions, logarithms, polynomials, exponentials, factorials, etc.)

• Combinatorics
 ○ summation notation over finite sets
 ○ permutations of finite sets
 ○ binomial coefficients, \(\binom{n}{k} \), the Binomial Theorem
 ○ Combinatorial proofs
 ○ Pigeonhole Principle

Graph Theory!

Definition:
A loop is an edge where both endpoints are the same

Definition:
Multiple edges are a collection of at least two edges all having the same endpoints as one another.

A Basic Classification:

<table>
<thead>
<tr>
<th></th>
<th>May Not Have Loops</th>
<th>May Have Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>May Not Have Multiple Edges</td>
<td>Simple Graph</td>
<td></td>
</tr>
<tr>
<td>May have Multiple Edges</td>
<td>Multigraph</td>
<td>Pseudograph (or sometimes Multigraph)</td>
</tr>
</tbody>
</table>

In what follows, we will in general assume that the term "graph" refers to a simple graph unless otherwise specified.

Definition:
A graph \(G \) is finite if both \(V \) and \(E \) are finite sets.
Definition:
If two vertices $u, v \in V$ are the endpoints of an edge in $e \in E$, we say that they are adjacent, that they are neighbors, that e connects u and v, and we write $u \leftrightarrow v$

Note:
For a simple graph, we can identify edges with their two endpoints, so we will often refer to "the edge uv" to denote the edge connecting these two vertices

Note:
We can think of a simple graph as a pictorial representation of a symmetric (but not reflexive!) relation

Motivating Question:
Does every group of six people contain a subset consisting of three people such that either none of those people know either of the other two each of those people knows both of the other two

?(this is an example of a clique finding problem)

Let V be a set of 6 people
Define a graph with edges connecting pairs of people who know each other

We could also define a graph with edges connecting pairs of people who don't know each other

Definition:
Let $G = (V, E)$ be a simple graph. The complement of G is the graph \overline{G} on the same vertex set V with edge set \overline{E} such that $uv \in \overline{E}$ if and only if $uv \notin E$

Definition:
A clique is set of vertices which are pairwise adjacent.

Definition:
An independent set is a set of vertices which are pairwise nonadjacent
Motivating Question:

Suppose that you are attempting a complicated group project with several parts. Each person in your group is to do one part. Knowing that each person may be better at some tasks than others, how can you assign tasks to people?

(this is an example of a *matching problem*)

We could draw a graph with vertices consisting of tasks and people, connecting each person to all of the tasks they can do well.

Definition:

A graph $G = (V, E)$ is *bipartite* if $V = V_1 \cup V_2$ is the union of two disjoint independent sets.

Motivating Question:

How can we represent the mathematical structure of a Sudoku puzzle (and solve it)?

Let V be the collection of boxes in the puzzle

Let edges connect pairs of boxes which are in the same 3x3 box, the same row, or the same column

No two adjacent vertices can be labeled with the same number! "colors"

Motivating Question:

How many colors do we need in order to draw a map of the world so that no adjacent countries have the same color?

Definition:

The *chromatic number* of a graph G is $\chi(G)$, given by the minimum number of distinct colors needed to label vertices so that all adjacent vertices receive different colors

Definition:

A graph G is *k-partite* if $V(G)$ can be written as the union of k disjoint independent sets - called partite sets.

Proposition:

A graph G is k-partite if and only if $\chi(G) \leq k$

Motivating Question:

What is the fastest route for me to travel to my home?

Graph Theory Page 6
Let the vertex set represent road intersections and the edges the roads connecting them. Label each edge by distance or travel time.

Definition:
A *path* is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.

Definition:
A *cycle* is a graph with an equal number of vertices and edges which can be drawn in a circle with consecutive edges in the circle connected.

Definition:
A *subgraph* of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ such that any edge in $E(H)$ has the same endpoints in H that it does in G.

We say *G contains H or contains a copy of H*.

Definition:
A graph G is *connected* iff each pair of vertices in G belongs to a path contained in G. Otherwise, G is *disconnected*.
Definition:
A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.
The length of a path is the number of edges present.

Definition:
A cycle is a graph with an equal number of vertices and edges which can be drawn in a circle with consecutive edges in the circle connected.

Definition:
A subgraph of a graph \(G \) is a graph \(H \) such that \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \) such that any edge in \(E(H) \) has the same endpoints in \(H \) that it does in \(G \)

We say \(G \) contains \(H \) or contains a copy of \(H \)

Definition:
A graph \(G \) is connected iff each pair of vertices in \(G \) belongs to a path contained in \(G \)
Otherwise, \(G \) is disconnected.

Matrix Representation of a Graph

Definition:
Let \(G \) be a graph without loops. Suppose that we fix the order of the vertices in \(V(G) \) as \(v_1, v_2, \ldots, v_n \)

The adjacency matrix of \(G \) is the \(n \) by \(n \) matrix \(A(G) \) with entries \(a_{i,j} \) given by the number of edges in \(G \) with endpoints \(\{v_i, v_j\} \)

Now, let us also fix the order of the edges in \(E(G) \) as \(e_1, \ldots, e_m \).
The incidence matrix of \(G \) is the \(n \) by \(m \) matrix \(M(G) \) with entries \(m_{i,j} \) equal to 1 if \(v_i \) is an endpoint of edge \(e_j \), and equal to 0 otherwise.
What are the adjacency matrix and incidence matrix of this graph?

\[
\begin{pmatrix}
 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 0 & 1 & 1 & 0
\end{pmatrix}
\]

Question: Suppose we consider the square of the adjacency matrix \(A^2(G) = A(G) \times A(G)\) for the above graph. How can we interpret the entries of this matrix?

\[
A^2(G) = \begin{pmatrix}
0 & 2 & 1 & 0 \\
2 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}
\]

Question: What happens to the adjacency matrix/incidence matrix if we list the vertices/edges in a different order?

Question: Construct a graph which has the following adjacency matrix

\[
\begin{pmatrix}
0 & 2 & 1 & 0 & 0 \\
2 & 0 & 0 & 3 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

What if we don't really care about the specific labels we've given to a vertices of a graph? We'll often care more about "structural properties" of a graph that would be the same no matter what we called the vertices.

What properties does a "relabeling function" of a graph have?

Definition:
Let \(G\) and \(H\) be simple graphs. An **isomorphism** or **graph isomorphism** is a bijection \(f : V(G) \to V(H)\) such that \(uv \in E(G)\) if and only if \(f(u)f(v) \in E(H)\).

If there exists a bijection between \(G\) and \(H\), we write \(G \cong H\).

Example: Are these graphs isomorphic?

\[
\begin{align*}
\text{Graph } G_1 & \quad \text{Graph } G_2 \\
\begin{array}{c}
\text{Are these isomorphic?}
\end{array} & \quad \text{Are these isomorphic?}
\end{align*}
\]
Definition:
The unlabeled path and unlabeled cycle with \(n \) vertices are denoted \(P_n \) and \(C_n \), respectively. \(C_n \) is sometimes also called an \(n \)-cycle.

Definition:
A complete graph on \(n \) vertices is a simple graph with all pairs of distinct vertices adjacent, and is denoted \(K_n \).

Question:
How many edges are there in a complete graph with \(n \) vertices?
Definition:
A complete bipartite graph or biclique is a simple bipartite graph such that two vertices are adjacent if and only if they lie in different partite sets. If the first partite set contains \(r \) vertices and the second contains \(s \) vertices, the graph is denoted \(K_{r,s} \).

Question:
How many edges are there in \(K_{r,s} \)?

Note:
We will often refer to graphs without explicitly describing or labeling their vertices. In such cases, we are implicitly referring to an isomorphism class of graphs.

Sentences like "\(H \) is a subgraph of \(G \)" can be very carefully read to mean "There is a subgraph of \(G \) which is isomorphism to \(H \)" or "\(G \) contains a copy of \(H \)"

Questions like "Is this graph \(K_5 \)?" should be understood as "Is this graph isomorphic to \(K_5 \)?"

Question:
Suppose I fix a vertex set \(V \) with \(n \) elements, say \(\{1, 2, 3, ..., n\} \). How many distinct labeled graphs can be made from these vertices?

If \(n = 3 \), how many isomorphism classes of graphs are there?

Proposition:
If two simple graphs \(H \) and \(G \) are isomorphic, then their complements are also isomorphic.

Decomposition of Graphs and Some Special Graphs

Question:
Consider the graph \(P_4 \). What is its complement?

Definition:
We say a graph is self-complementary if it is isomorphic to its complement.

Definition:
A decomposition of a graph \(G \) is a list of subgraphs of \(G \) such that each edge in \(E(G) \) appears in exactly one subgraph in the list.
Proposition:
A graph \(H \) with \(n \) vertices is self-complementary if and only if \(K_n \) has a decomposition consisting of two copies of \(H \).

Example:
\(K_5 \) is two copies of \(P_5 \)

Example:
\(K_4 \) is three copies of \(P_3 \)

Note:
In many computational applications, we decompose complicated shapes into triangulations. Doing this is fundamentally about graph decompositions!

Note:
Lots of graphs have cute names, some of which are commonly used and others less so

Which of these are self complementary?

There are myriad other specific graphs of interest.

Definition:
The Petersen graph is the simple graph \(G \) with \(V(G) \) the 2-element subsets of a 5-element set with edges joining each pair of disjoint subsets.

Proposition: (for the class)
Given any two distinct points in the Petersen graph, there exists a unique path of length either 1 or 2 (but not both) connecting them.

Definition:
The girth of a graph is the length of the shortest cycle contained in the graph. If the graph contains no cycle, the girth is said to be infinite.

Claim:
The Petersen graph has girth 5.

Claim:
Any complete graph with at least three vertices has girth 3.
Claim: Any complete bipartite graph with at least 2 vertices in each partite set has girth 4.

One of the things that makes the Petersen graph really nice is that it has some nice symmetry properties. We can encode these properties really precisely.

Definition: An automorphism of a graph G is an isomorphism from G to G.

Example:

```
1
\[ \begin{array}{c}
1 \ 3 \\
\ 5 \\
4
\end{array} \]
```

Definition: A graph G is vertex-transitive if, for every pair $u, v \in V(G)$, there exists an automorphism of G that maps u to v.

An easy example is the 4-cycle. P_4 is not vertex-transitive.

Claim: The Petersen graph is vertex-transitive.

Note: Suppose a graph G is vertex-transitive. If we prove a property of the graph is true for some specific vertex, it must be true for all vertices!
Quick review of strong induction...

Definition:
A walk is a list \(v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k \) of vertices and edges such that, for \(1 \leq i \leq k \) the edge \(e_i \) has endpoints \(v_{i-1} \) and \(v_i \).

A trail is a walk with no repeated edges.

A \(u, v \)-walk or \(u, v \)-trail has initial vertex \(u \) and final vertex \(v \).

A \(u, v \)-path is a path whose degree 1 vertices are \(u \) and \(v \) with the others called internal vertices.

The length of a walk is the number of edges present in the walk.

A walk or trail is closed if \(v_0 = v_k \).

Note:
In a simple graph, it isn't really necessary to specify the edges explicitly for a walk.

Note:
We say one walk contains another if the latter is a sublist of the former.

Lemma:
Every \(u, v \)-walk contains a \(u, v \)-path.

Proof:
Induct on the length of the walk.

Definition:
A graph \(G \) is connected if it has a \(u, v \)-path for all \(u, v \in V(G) \). Otherwise, it is disconnected.

The connection relation on \(V(G) \) consists of those pairs of points for which there exists a \(u, v \)-path (we sometimes call such pairs of points connected, but it's a better term to avoid).

Claim:
The connection relation is an equivalence relation.

Definition:
The components or connected components of a graph are the equivalence classes of the connection relation. Alternatively, they are maximal connected subgraphs.

A component is trivial if it has no edges, otherwise nontrivial

An isolated vertex is a vertex of degree 0

Claim:
A graph has trivial components if and only if it has isolated vertices.

Proposition:
Let \(G \) have \(n \) vertices and \(k \) edges. Then \(G \) has at least \(n - k \) components.

Proof:
If \(k = 0 \), this is immediate. Otherwise, adding an edge potentially merges at most 2 components into 1.

Question:
What can happen to the number of components in a graph if we delete an edge in a subgraph? What if we delete a vertex and take the induced subgraph?

Notation:
We write \(G - e \) for the subgraph with a particular edge deleted, \(G - M \) for the subgraph with a set of edges \(M \) all deleted.

We similarly write \(G - v \) or \(G - S \) for induced subgraphs with specified vertices deleted.

We will write \(G[T] \) to mean the induced subgraph on a set \(T \subseteq V(G) \)

Definition:
A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Theorem:
An edge is a cut-edge if and only if it does not belong to a cycle.

Proof:
Suppose \(e \) has endpoints \(x, y \). Consider deleting it and look at the multiplicity of paths. On the other hand, suppose \(e \) is contained in a cycle. Then it's not a cut-edge.

(first lecture ended here)
Bipartite Graphs & Cycles

It can really be a pain in the neck to figure out if a given graph is bipartite. Being able to characterize this simply is very helpful.

Notation:
We say a walk is odd (even) if its length is odd (even).

Lemma:
Every closed odd walk contains an odd cycle.

Proof:
If the walk never repeats a vertex, done. Otherwise, we can examine the strictly shorter walk.

Definition:
A bipartition of G is a specification of two disjoint independent sets in G whose union is $V(G)$

"Let G be a bipartite graph with biartition X,Y" is a phrase we’ll find ourselves saying frequently.
Synonymously we'll call such a thing a X,Y-bigraph

Theorem: (Koenig 1936)
A graph is bipartite iff it has no odd cycle.

Proof:
Necessity is clear
Sufficiency → Fix a vertex, define an even-odd minimum path length bipartition. Show that two points in the same partite set can’t be connected by an edge.

(The converse is useful here - if you can find an odd cycle in a graph, then it isn't bipartite)

Definition:
Given graphs G_1, G_2, \ldots, G_n, their union $G_1 \cup G_2 \cup \cdots \cup G_n$ is the graph with vertex set $\bigcup_{i=1}^{n} V(G_i)$
and edge set $\bigcup_{i=1}^{n} E(G_i)$

Example for them:
Write K_5 as a union of 5-cycles. How many are required?
How many 4-cycles are required?
Theorem:

The complete graph K_n can be expressed as the union of k bipartite graphs iff $n \leq 2^k$

Proof:

(induct on k)

- (k=1) K_n fails to be bipartite iff $n > 2$, so we have the desired result.
- Suppose that the desired statement is true for all smaller values of k

 Let $K_n = G_1 \cup \cdots \cup G_k$ all bipartite

 Define sets X, Y such that no edge in G_k connects two points in the same of these two sets

 Take the induced subgraphs on X, Y. These are smaller graphs, and we can write each as the union of $k - 1$ bipartite graphs.

Let $n \leq 2^k$. Define arbitrary subsets X, Y with cardinality no more than 2^{k-1}. They can be covered by $k - 1$ bipartite graphs. Define G_i as the pairwise disjoint union of these, and let G_k contain edges between points of X and of Y

Eulerian Circuits

Definition:

A graph is Eulerian if it has a closed trail containing all edges.

We call a closed trail a circuit if we don’t specify the initial point, but write points cyclically.

Terminology:

We call a vertex even (odd) if it has even (odd) degree. A graph is even if all vertices are even.

We call a path $P \subseteq G$ maximal if no strictly larger path containing it is contained in G

Lemma:

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

Take a maximal path with endpoint u

It has at least one neighbor not in the middle of the path by degree considerations

If this neighbor isn’t in the path, then the path can be extended to it, given a larger path.

Note:

This argument only works with finite graphs - what goes wrong if the graph is infinite? Consider the integers.
Note:
The above proof is an example of an "extremality argument". These arguments rely on supposing a "maximal" example of some type of construction, using the extra information about maximality in a useful way.

Theorem:
A graph is Eulerian iff it is even and has at most one non-trivial component.

Proof:
Clearly having one component is a necessary condition, so we assume our graph is connected going forward.

Eulerian implies even is straightforward.
Even implies Eulerian:
- **Strong induction on # of edges.**
 - G contains a cycle. Remove it, continue. Each component thus obtained is still even.

Corollary:
Every even graph decomposes into cycles.

Proposition:
If G is a simple graph in which every vertex has degree at least k, then G contains a path of length at least k. If $k \geq 2$, then G contains a cycle of length at least $k + 1$.

Proof:
(Extremality argument)
Consider a maximal path; its endpoint can only be adjacent to vertices in the path. Since it has degree k, the result follows.
For a cycle, take the furthest neighbor of the endpoint.

It's worth noting that not every vertex of a graph can be a cut-vertex.

Proposition:
Every graph with a non-loop edge has at least two vertices that are not cut-vertices.
(can the class figure out the counterexample with a loop edge?)

Proof:
The endpoints in a maximal path are not cut-vertices, since all of their neighbors are connected via the path.

(Common strategies with extremal proofs are to find maximal paths, vertices of maximal or minimal degree, maximal connected subgraphs, and so on)
Note: This extremal proof method is deeply related to induction, and the two are in some sense equivalent. We'll reprove the Eulerian cycle theorem using extremality rather than induction to demonstrate

Lemma: In an even graph, every non-extendible trail is closed.

Theorem: A graph is Eulerian iff it is connected and even.

Proof: Take a trail of maximal length. If it doesn't contain every edge, append that edge onto the trail. It is now longer.

Graphs that are Eulerian are "covered" by a single trail. What if we allowed more than 1? Can we figure out which graphs can be decomposed into two trails? Three trails? k trails?

Theorem: For a connected nontrivial graph with exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$

Proof: Arbitrarily pair up odd vertices and draw an extra edge between them. The resulting graph is even and connected. Take an Eulerian trail, and let it disconnect on the newly drawn edges.

(This proof also serves to demonstrate that we can prove pretty general theorems as simple corollaries of less general theorems.)
Definition: The degree of a vertex v in a graph G is written $d_G(v)$ or $d(v)$ and is the number of edges incident to v, with loops counted twice.

Definition: Given a graph G, we write $\Delta(G)$ as the maximum degree of vertices and $\delta(G)$ the minimum degree

Definition: G is regular if $\Delta(G) = \delta(G)$
G is k-regular if it is regular with $\Delta(G) = k$

Definition: The neighborhood of a vertex v is $N_G(v)$ or $N(v)$ the set of vertices adjacent to v

It's also useful for us to clarify our notation for the size of a graph.

Definition: A graph has order $n(G)$ if it has n vertices.
A graph has size $e(G)$ if it has e edges.

Notation: We'll sometimes refer to the set $[n] = \{1, 2, 3, \ldots, n\}$

Proposition: If G is a graph, the sum of degrees of all vertices is even.

Corollary: Every graph has an even number of vertices with odd degree.

Corollary: In a graph G, the average vertex degree is $\frac{2e(G)}{n(G)}$, and in particular
$$\delta(G) \leq \frac{2e(G)}{n(G)} \leq \Delta(G)$$

Question: How many edges does an order n k-regular graph have?

Proposition: If $k > 0$, any k-regular bipartite graph has the same number of vertices in any partite set.

Proof: All edges are between the partite sets. Count them based on edges in the first, then by edges in the second to establish equivalence.
Clever counting methods can be extremely helpful in analyzing graphs. (maybe exclude this example?)

Proposition:
The Petersen graph has 10 6-cycles.

Proof:
(Recall the Petersen graph) Note that the Petersen graph manifestly contains 10 copies of the 'claw', one centered at each vertex.

\[G \text{ has girth 5, so every 6-cycle is an induced subgraph - each point in such a cycle is adjacent to one external vertex. In Petersen graph, nonadjacent vertices have a unique common neighbor - take opposite points in the cycle.} \]

Subtract cycle from \(G \), 4 vertices remain, common neighbors have degree 1, last vertex has degree 3 - this is a claw.

To show each claw is obtained only once by this procedure, take a claw. Degree 1 vertices in it all have a common neighbor, so external vertices cannot coincide. Subtract claw from \(G \), remaining graph is 2-regular, must be a 6-cycle.

These types of counting arguments have incredible power in graph theory.

(subgraphs of a graph with a single deleted vertex are sometimes called *vertex-deleted subgraphs*)

Proposition: (for them)
Let \(G \) be a simple graph with vertices \(v_1, \ldots, v_n \) and \(n \geq 3 \). Then

\[e(G) = \sum_{v \in V(G)} e(G - v) \]

It's reasonable to ask how well we can, given information about vertex-deleted subgraphs, figure out information about a graph itself. In particular, how well this can be done without information about labels.

Conjecture: (Reconstruction Conjecture)
If \(G \) is a simple graph with at least 3 vertices, then \(G \) is uniquely determined by the list of (isomorphism classes of) its vertex deleted subgraphs.

Extremal Problems
We often wish to answer questions of the form: "How big (or small) of an example of ___ can be found among things of type ____?"
These are referred to as *extremal problems*

Proposition:
The minimum number of edges in a connected graph with \(n \) vertices is \(n - 1 \)

Proof:
The path satisfies this bound.
Fewer edges cannot connect this many points.

Note:
Somewhat formally written, to show that β is the minimum value of $f(G)$ over some class of graphs G, then we must show two things.
- $f(G) \geq \beta$ for all $G \in G$
- $f(G) = \beta$ for some $G \in G$

Proposition:
If G is a simple order n graph with $\delta(G) \geq \frac{(n-1)}{2}$, then G is connected.

Proof:
Any two vertices are adjacent or have a common neighbor

This proposition is actually part of an extremal problem in disguise.

Proposition:
The maximum value of $\delta(G)$ among simple graphs of order n is $\left\lfloor \frac{n}{2} \right\rfloor - 1$

Proof:
Let G be an n-vertex graph with two components, $K_{\left\lfloor \frac{n}{2} \right\rfloor}$ and $K_{\left\lfloor \frac{n}{2} \right\rfloor}$
Use the previous proposition for the rest.

Notice that in order to solve this extremal problem, we had to find an example for each value of n - a family of extremal solutions.

Definition:
The graph obtained by taking the union of graphs G and H with disjoint vertices is the *disjoint union* or *sum* $G + H$
The graph with m disjoint copies of G is mG

-- The previous proof used such a disjoint union.

(Class ended here)

Claim:
$K_n + K_m = K_{m,n}$

Note:
In a similar vein, we sometimes wish to find the largest example of some type within a single specified graph (largest clique, highest degree vertex, etc).
To distinguish these from extremal problems, we call them *optimization problems*
Solving such problems tends to be very complex. Proofs usually tend to describe an algorithm (sequence of steps) one could use to find such a optimum.

Theorem:

Every loopless graph G has a bipartite subgraph with at least $\frac{e(G)}{2}$ edges.

Proof:

Split $V(G)$ into two arbitrary sets X, Y. Take edges connecting these sets.
If this is not more than half the edges, there exists a vertex with more than half of adjacent vertices in the same set. Move it to the other set. Repeat. This process will terminate with a subgraph satisfying the desired property.

This question could be motivated by a military question or by various social group questions. Imagine you have a collection of armies each with their own enemy armies. If no two distinct have a common enemy, how many "enemy connections" can there be?

Question:

How many edges can be there be in an order n graph which contains no triangles?

Definition:

A graph G is H-free if G has no induced subgraph isomorphic to H.

Theorem:

The maximum number of edges in a C_3-free simple graph of order n is $\left\lfloor \frac{n^2}{4} \right\rfloor$

Proof:

Let G be such a graph, and x its vertex of maximal degree, k.
No two neighbors of x are adjacent, so each edge is between an element of $N(x)$ and its complement, or between two elements of its complement. Thus,

$$\sum_{v \in N(x)} d(v) \geq e(G)$$

The former sum is at most $(n - k)k$

The expression $(n - k)k$ is maximized when $k = \frac{n}{2}$

Let's try to prove this without calculus, though

The expression $(n - k)k$ represents the number of edges in $K_{n-k,k}$

Move an from size k set to size $n - k$ set gains $k - 1$ edges, loses $n - k$, so change of $2k = 1 - n$

To achieve this minimum, consider

$K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lfloor \frac{n}{2} \right\rfloor}$

Note:

In principle, we could try to prove this kind of theorem by induction. However, it might be quite tricky and one has to be quite cautious. What goes wrong with the following argument for the previous theorem?

Base Case: $n = 2$ - this case is immediate

Induction Step:

Suppose the statement holds for $n = k$, so the complete graph listed earlier is extremal
in this case. Add a new vertex to it to form a triangle-free graph with \(k + 1 \) vertices. As long as new vertex is only adjacent to vertices from one partite set, this creates no triangles. This gives the new complete bipartite graph, completing the proof.

Fails because we aren't certain a priori that adding a vertex to the previous extremal case is actually going to give the new extremal case, and we haven't proven that.

Takeaway: If doing an inductive proof - make sure you start with an arbitrary thing satisfying the \(k + 1 \)-case and attempt to shrink it, rather than trying to grow the \(k \)-case. Schematically, if the induction proof is for the claim \(A(n) \Rightarrow B(n) \) for all \(G \) of size \(n \)

\[
G \text{ satisfies } A(n) \Rightarrow G' \text{ satisfies } A(n - 1) \Rightarrow G' \text{ satisfies } B(n - 1) \Rightarrow G \text{ satisfies } B(n)
\]

Graphic Sequences

We've previously used degrees as a way to think about graph isomorphism. But degree of a single vertex isn't a meaningful graph invariant. How can we phrase degree in such a way as to make it a graph invariant concept?

Definition:

The *degree sequence* of a graph is the list of vertex degrees, usually written in nonincreasing order

\[
d_1 \leq d_2 \leq \cdots \leq d_n
\]

Question:

Can any arbitrary degree sequence be realized by a graph?

2,2,3,4?

Proposition:

Iff \(\sum d_i \) is even, then the given sequence is the degree sequence of some graph.

Proof:

(Necessity) Degree sum formula
(Sufficiency) Connect pairs of odd vertices. Then draw a whole bunch of loops.

This theorem is much harder, and not actually true, if we don't allow loops or multiple edges. (Consider 2,0,0,0)

Definition:

A *graphic sequence* is a list of nonnegative numbers that is the degree sequence for a simple graph. A simple graph with a given degree sequence "realizes" that sequence

There are a lot of possible ways to characterize this. Multiple such characterizations can be found in Sierksma-Hoogeveen (1991)

Idea:

How could we know if the sequence 3,3,3,3,2,2,1 is graphic?
Let's try to construct one - there's a vertex of degree 3 - could all of its neighbors also have degree 3?
If so, we could remove it from the graph, neighbors would now have degree 2. The resulting graph would have to have degree sequence 3,2,2,2,2,1
There's a vertex of degree 3, could all neighbors have degree 2?
If so, remove it, neighbors now have degree 1. Resulting graph would have degree sequence 2,2,1,1,1,1
Repeat
1,1,1,1,0
1,1,0,0
0,0,0
0,0
0

Draw each graph and build up

(lecture ended halfway through this proof)

Theorem: (Havel [1955], Hakimi [1962])

For $n > 1$ an integer list d of size n is graphic if and only if d' is graphic, where d' is obtained from d by taking the largest element Δ of d and deleting it while decrementing the following Δ-largest elements by 1.
The only 1 element graphic sequence is $d_1 = 0$

Proof:
The 1 element case is trivial.

Suppose we have a sequence d of length more than 1 and a corresponding sequence d' (written in decreasing order) which is realized by a graph G'

Attach a new vertex to G' with Δ connections to vertices with degrees $d_2 - 1, d_3 - 1, \ldots, d_{\Delta+1} - 1$

Suppose d is realized by a graph G
Let $w \in V(G)$ have degree $d_1 = \Delta$
Let S be a set of vertices in G having degrees $d_2, d_2, \ldots, d_{\Delta+1}$
If $N(w) = S$, done
Else (modify G to increase $|N(w) \cap S|$)
 There must exist $x \in S$ and $z \not\in S$ with x not adjacent to w but z adjacent to w
 By necessity, $d(x) \geq d(z)$
 Must be a vertex y connected to x but not z
 Switch the connections up
Repeat previous step as necessary

The procedure in the previous proof is kind of interesting, in that it codifies a particular way we can modify a graph without changing any vertex degrees.

Definition:
A 2-switch is the replacement of a pair of edges xy and zw in a simple graph by edges yz and wx, given that neither of the latter were already in the graph
(draw)
These operations are surprisingly powerful!

Theorem: (Berge 1973)

If G, H are two simple graphs with vertex set V, then $d_G(v) = d_H(v)$ for every $v \in V$ if and only if there is a sequence of 2-switches that transforms G into H

Proof:

For sufficiency, 2-switches preserve vertex degree

For necessity, go by induction with $n = 3$ base case (degree sequence is a complete invariant here and below)

Transform both G and H using the previous strategy to ones where the highest degree vertex connects to the next highest degree vertices

Delete highest degree vertex from both, use induction.
Graphs as we've discussed them are pictorial representations of symmetric relations on a set V.

Of course, in general relations need not be symmetric. Can we generalize our discussions of graphs to incorporate this case? How much of what we previously introduced remains? What changes?

Example:
Suppose we consider the relation on $\{0,1,2,3,4,5,6\}$ given by xRy if $x^2 \equiv y \mod 7$

Draw this as a directed graph.

Definition:
A *directed graph* or *digraph* G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$ and a function assigning to each edge an ordered pair of vertices.

If $e \mapsto (x, y)$ we say x is the *tail* and y is the *head* of the edge, and we say e is an edge from x to y.

We will often identify an edge with this ordered pair of vertices, calling xy an edge.

We also say that y is a *successor* of x, and that x is a *predecessor* of y.

We write $x \rightarrow y$ as "there is an edge from x to $y"."

Definition:
In a digraph, a *loop* is an edge for which the tail and head coincide.

Multiple edges are edges having the same ordered pair of endpoints.

A digraph is *simple* if there are no multiple edges.

(Note: having a loop is permitted for simple digraphs!)

Definition: (tangential)
Finite state machines
- Collection of states is vertices
- Edges represent possible transitions (often labeled with causative descriptions)

Turing Machines (if desired)

Definition: (tangential)
Markov Chains
- Collection of states is vertices
- Edges are labeled by their probability, such that the total probability out of each vertex is 1
 (explain this - simple example of weather or such?)
We can define a few similar kinds of graphs in this case as we did in the undirected graph case

Definition:

A digraph is a *path* if it is a simple digraph whose vertices can be linearly ordered so that $u \to v$ if and only if v immediately follows u in the order.

A *cycle* is similarly defined with an ordering of the vertices as points on a circle.

Note:

Digraphs give us a general way to encode relations

Any arbitrary function $f: A \to A$ induces a relation Γ_f on A given by $\{a, f(a) | a \in A\}$

(This relation is called the *graph of* f)

This, in turn, gives us a digraph, the *functional digraph of* f! (This is the very basics of the simplest case of dynamical systems)

Proposition: (decide whether or not this is worth including)

If A is a finite set and $f: A \to A$, then the functional digraph consists of disjoint pieces consisting of cycles each with a finite number of attached 'predecessor paths'

Note:

Some people use "node" and "arc" instead of "vertex" and "edge" for digraphs.

Now, we'd like to relate this slightly more general case to what we already know, as much as possible.

Definition:

The *underlying graph* of a digraph D is the graph G with the same vertex set obtained by treating the edges of D as unordered pairs.

Definition:

We can define *subgraphs, isomorphisms, decompositions, unions* of digraphs just as with graphs.

Definition:

The *adjacency matrix* of a digraph G is the matrix with the entry at i, j giving the number of edges in G from v_i to v_j.

In the *incidence matrix* $M(G)$ of a loopless digraph G we set the entry at i,j to $+1$ if v_i is the tail of e_j, to -1 if v_i is the head of e_j, or 0 otherwise.
Question:
What can we say about connectedness?
(Draw a picture to illustrate why this is a nuisance)

Definition:
A digraph is weakly connected if its underlying graph is connected.
A digraph is strongly connected or strong if there is a path from \(u \) to \(v \) for each pair of vertices \(u, v \).

Strong components of a digraph are maximal strong subgraphs.

Note:
For regular graphs, a graph was the union of its components.
Is a digraph necessarily the union of its weak components?
What about its strong components?

(lecture ended here)

Application: (Basic game theory)
Two player games can be written as finite state machines
Vertex sets are states of the game with edges connecting states which are connected by a single move.
Some states are winning states for player 1, some others are losing states.
This framework is incredibly useful for asking questions about optimal strategies in a game, or in developing AI frameworks for such tasks

Suppose that we have a game such that the win states \(W \) are such that whichever play makes a move which enters the set \(W \) wins the game, with no edges leaving \(W \)

(Nim [that game with picking 1 or 2 pebbles] strategy idea here)
Suppose you can identify a set of states \(S \) containing \(W \) satisfying two properties
- No two vertices in \(S \) are adjacent.
- Every vertex in \(S \) has an outgoing edge to a vertex in \(S \)
If you can make a move that brings the game to a state in \(S \), you will win (without any subsequent mistakes)

Definition:
A kernel in a digraph \(D \) is a set \(S \subseteq V(D) \) such that \(S \) induces no edges and every vertex outside \(S \) has a successor in \(S \).

Question:
When can we guarantee the existence of a kernel in a digraph? Are there good techniques to finding them?

Theorem: (state, but don't prove) (Richardson 1953)
Every digraph having no odd cycle has a kernel.

One of the most useful concepts for graphs was the idea of degree. How is this altered in the directed case?

Definition:
Let \(v \) be a vertex in a digraph. The **outdegree** \(d^+(v) \) is the number of edges with tail \(v \). The **indegree** \(d^-(v) \) is the number of edges with head \(v \).

The **out-neighborhood** or **successor set** \(N^+(v) \) is the set of successors. Likewise, **in-neighborhood** or **predecessor set** \(N^-(v) \).

For a digraph \(G \), we have minimum and maximum indegrees and outdegrees \(\delta^+(G) \) and \(\Delta^+(G) \).

Proposition:
In a digraph, the sum of indegrees and outdegrees are both equal to the number of edges.

We can define the equivalent of degree sequences, too!
In this case, we would be interested in a list of "degree pairs" \((d^+(v_i), d^-(v_i)) \).

Proposition:
A list of pairs of non-negative integers is realizable as the degree pairs of a digraph if and only if the sum of the first coordinates equals the sum of the second coordinates.

Is there an equivalent to the Havel-Hakimi criterion?
Stating such things tends to be a pain in the neck. Typical techniques involve transforming digraphs into graphs in some way, then using that transformation to translate results.

Definition:
The **split** of a digraph \(D \) is a bipartite graph \(G \) whose partite sets \(V^+, V^- \) are each copies of \(V(D) \), consisting of points \(v^+, v^- \) for each \(v \in V(D) \). An edge connects \(u^- \) to \(v^+ \) in \(G \) if \(u \to v \) in \(D \).

Note:
When one defines such a transformation, it's often helpful to ask what properties are and are not translated over in a convenient way.
How does degree in the split of a digraph relate to indegree/oudegree? (in a reasonably clear way)
How does connectedness relate? (not really at all)

Can one invert the construction of the split? Namely, given a \(X, Y \)-bigraph with \(|X| = |Y| = n \), can one construct a directed subgraph from it whose split is the original graph? (Yes, just use a bijection between partite sets and done)
Can we ask questions about Eulerian cycles on directed graphs?

Definition:

We can define *trails, walks, circuits*, the *connection relation* in the same way as for graphs, with the only caveat being that motion along an edge must go from the tail to the head.

Definition:

An *Eulerian trail* in a digraph is a trail containing all edges. An *Eulerian circuit* is a closed trail containing all edges. A digraph is *Eulerian* if it has an Eulerian circuit.

Proving which digraphs are Eulerian is mostly the same as in the graph case. First, prove a lemma.

Lemma:

If G is a digraph with $\delta^+(G) \geq 1$ then G contains a cycle. The same can be said if $\delta^-(G) \geq 1$.

Proof:

(maximal path argument)

Theorem:

A digraph is Eulerian if and only if $d^+(v) = d^-(v)$ for each vertex v and the underlying graph has at most one nontrivial component.

Application: (De Bruijn Cycles)

Question:

Is it possible to write 2^n binary digits in a cyclic order such that all substrings of length n are different binary strings?

Solution:

Define a digraph D_n with vertices given by n-digit binary strings, and directed edges between s_1 and s_2 if s_2 is obtained from s_1 by deleting the first digit and appending a new digit to the end. (edges are usually labeled, as well)

(Draw D_1, D_2)

Claim:

D_n is strong (there's actually always a path of length n)

Claim:

D_n is Eulerian

These graphs are called *de Bruijn graphs* of order n on an alphabet of size 2. (One can define similar things for larger alphabets as well)

Orientations and Tournaments ------

Quick Question:

How many distinct simple digraphs are there on a given vertex set?

It's important for us to have a number of ways to transition between graphs and digraphs. One way to go from a graph to a digraph is to just assign directions to all the edges.
Definition:
An orientation of a graph G is a digraph obtained from G by picking an orientation ($x \to y$ or $x \leftarrow y$) for each edge $xy \in E(G)$.

An oriented graph is an orientation of a simple graph.
A tournament is an orientation of a complete graph.

(It's called a tournament by analogy with a collection of sports teams playing games or such in a "round-robin tournament")

Idea:
One thinks of $x \to y$ as imagining "x defeats $y"

Note:
Following this analogy, the outdegree sequence of a tournament is called its score sequence.

Question:
In a tournament, how can one determine the indegrees if given the outdegrees?

Proposition:
Oriented graphs are loopless simple digraphs without any cycles of length 2.

Question:
How many oriented graphs are there on a given vertex set?

Question:
How many tournaments are there on a given vertex set?

Tournaments may not necessarily have a single "winner", but we can nonetheless characterize those teams which did the "best" in some sense.

Definition:
In a digraph, a king is a vertex from which every vertex is reachable by a path of length at most 2

Note:
In the context of tournaments, a king is a vertex v such that for every other vertex w, either $v \to w$ or there is a third vertex u such that $v \to u$ and $u \to w$

(Kings need not be unique!)

Proposition: (Landau 1953)
Every tournament has a king.

Proof:
Take a vertex which isn't a king.
Then there's a y not reachable from x in length 2.
Then $y \to x$ and for any z for which $x \to z$ one has $y \to z$ as well.
Thus y has higher outdegree than x.
Repeat argument on y.

Corollary:
Any vertex in a tournament with maximal outdegree is a king.
When we study graphs as networks, we're often interested in one of two features.

Efficiency - how well does a graph connect a collection of vertices?
Resiliency - often determinable by looking at the cycle structure of graphs

Trees will let us study the former

Definition:
A graph with no cycle is *acyclic*, or a *forest*
A *tree* is a connected acyclic graph.
A *leaf* (or *pendant vertex*) is a vertex of degree 1

Examples:
Paths are trees
Claws are trees

Proposition:
All trees and forests are bipartite.

We will often be particularly interested in finding large trees as subgraphs of a given graph.

Definition:
A *spanning subgraph* of G is a subgraph with vertex set $V(G)$
A *spanning tree* is a spanning subgraph that is a tree.

Trees have *many, many* properties which are extremely useful. We'll want to establish that all of these properties are equivalent, so that if we find one of them to be true then we know all are.

Lemma:
Every tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with $n - 1$ vertices.

Proof:
Take a maximal path to get leaves.

Note:
This lemma has the useful implication that all trees with n vertices can be built by attaching a new vertex to a tree with $n - 1$ vertices.
Theorem:
For an n-vertex graph G with $n \geq 1$, the following are equivalent.

A) G is connected and has no cycles
B) G is connected and has $n - 1$ edges
C) G has $n - 1$ edges and no cycles
D) G has no loops and has, for each $u, v \in V(G)$, exactly one u, v-path

Proof:
First prove that any two of [connected, acyclic, $n - 1$ edges] implies the third.
A \rightarrow (B,C) by induction on n. Take a graph with n-vertices, remove a leaf

B \rightarrow (A,C) Delete edges until G is acyclic. The resulting graph is connected, so must have at least $n - 1$ edges.

C \rightarrow (A,B) Split into components, each component must satisfy A, sum vertices

Now we prove equivalence of D with first three
A \rightarrow D Take two different paths, find a cycle.
D \rightarrow A If G has a cycle, that's two paths between a pair of vertices.

Corollary:
Every edge of a tree is a cut edge

Adding one edge to a tree forms exactly one cycle [draw a picture]

Every connected graph contains a spanning tree.

The set of spanning trees of a graph will tell us a lot about the structure of the graph. We'll need a few basic propositions in this direction.

Proposition:
Suppose T, T' are spanning trees of a connected graph G and suppose $e \in E(T) \setminus E(T')$.
Then there is an edge $e' \in E(T') \setminus E(T)$ such that $T - e + e'$ is a spanning tree of G.

Proof:
Every edge is a cut edge. Rejoin components and count edges.

This proposition is really similar, but we do the addition and subtraction in the other order

Proposition:
Suppose T, T' are spanning trees of a connected graph G and suppose $e \in E(T) \setminus E(T')$.
Then there is an edge $e' \in E(T') \setminus E(T)$ such that $T' + e - e'$ is a spanning tree of G.

Proof:
One has a unique cycle in $T' + e$. T can't contain the whole cycle.
Note:
One can actually find e' to satisfy both propositions simultaneously.

Every graph which is 'connected enough' contains a great variety of different trees.

Proposition:
If T is a tree with k edges and G is a simple graph with $\delta(G) \geq k$, then T is a subgraph of G

Proof:
Induction on k. $k = 0$ is trivial - just a vertex

Take a leaf v in T, let u be its neighbor. G contains $T' = T - v$ since $\delta(G) \geq k > k - 1$
Let $x \in V(G)$ correspond to $u \in V(T')$. Necessarily, T' cannot contain all G-neighbors of x

Note:
The graph K_k has $\delta = k - 1$ but contains no tree with k edges.
One might wish to prove an equivalent proposition based on the number of edges in G.
The conjectured bound is that if $e(G) > n(k - 1)/2$ then G contains all trees of order k

(lecture ended here)

Measuring Distance in Graphs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition:
If G has a u, v-path, the distance from u, v is $d_G(u, v)$ or $d(u, v)$ is the least length of a u, v-path.
If G has no u, v-path, we set $d(u, v) = \infty$

The diameter of G is $\text{diam } G = \max_{u, v \in V(G)} d(u, v)$

The eccentricity of a vertex u is $\epsilon(u) = \max_{v \in V(G)} d(u, v)$
The radius of a graph G is $\text{rad } G = \min_{u \in V(G)} \epsilon(u)$

Note:
The diameter is the maximum vertex eccentricity.

Question:
What can we say about radius/diameter if a graph is disconnected?

Question:
On $n \geq 3$ vertices, what is the tree with smallest diameter?

We can think of diameter of a graph as reflective of two things
The order of the graph - many vertices means it is possible for paths to be longer
The number of missing edges - the fewer edges present, the more circuitous paths will have to be
Theorem:
If G is a simple graph, then $\text{diam } G \geq 3$ implies $\text{diam } \overline{G} \leq 3$

Proof:
Since G does not have diameter 1 or 2, there are nonadjacent vertices u, v without a common neighbor.
Every vertex in \overline{G} must be connected to at least 1, then.
Worst case, from x_1 to u to v to x_2 (draw)

There are many, many ways to measure the idea of centrality in a graph. (There will be some homework about this eventually.)
Here’s one way.

Definition:
The center of a graph G is the subgraph induced by the vertices of minimum eccentricity.

Question:
Under what conditions is the center of a graph the whole graph?
- All vertices have same eccentricity - radius = diameter

For trees, we can characterize the center pretty well.

Theorem: (Jordan 1869)
The center of a tree is a vertex or an edge.

Proof:
By induction on number of vertices.
If $n \leq 2$ then the center is the whole tree.

If $n > 2$, delete every leaf of the tree to get a smaller tree T'.
$\epsilon_T(u) = \epsilon_T(u)$ for all remaining vertices u
The leaves do not minimize eccentricity.

If we’re treating a graph as a network, then we’ll be quite interested in asking how short paths that can get around the graph are. We can quantity this, in an average sense, by looking at all possible shortest paths.

Definition:
The Wiener index of a graph G is $D(G)$ (or $W(G)$) given by the formula

$$ D(G) = \sum_{u,v \in V(G)} d_G(u, v) $$

This kind of quantity is really important if we take a sequence of finite sets growing to an infinite set - discontinuities in the (appropriately normalized) limit can be used to tell us about phase transitions of materials [Wiener did it with paraffin]

For finite graphs, we can characterize the extremal cases of the Wiener index without too much trouble.

Theorem:
Among trees with n vertices, the Wiener index $D(T)$ is minimized by stars and maximized by paths, in both cases uniquely.

Proof:
Tree has $n - 1$ edges, so $n - 1$ pairs of vertices are distance 1, and all other pairs of vertices are more distant. Star achieves 2 for all others, which is minimal. Every other tree has some pair of points of distance 3.

For Wiener index of paths, note that

$$D(P_n) = D(P_{n-1}) + \binom{n}{2}$$

Since $D(P_1) = 0$ and $D(P_2) = 1$, we have $D(P_n) = \binom{n+1}{3}$

We prove maximization by induction on n. $n = 1$ is immediate.

Take a leaf u in a tree T.

$$D(T) = D(T - u) + \sum_{v \in V(T)} d(u, v)$$

Certainly $D(T - u) \leq D(P_{n-1})$ by induction. Claim that the set of distances from u to other points in tree is all integers between 1 and k for some k (with some multiplicity possible). This set is 1 through $n - 1$ iff T is a path, otherwise the sum is strictly less.

Thinking of the Wiener index as a measure of "the most connected graph", the next proposition is intuitive.

Proposition:
Out of connected n-vertex graphs, the complete graph minimizes D

Here's a useful little lemma, with a similar ideas as the previous proposition.

Lemma:
If H is a subgraph of G, then $d_H(u, v) \geq d_G(u, v)$

Corollary:
If G is a connected n-vertex graph, then $D(G) \leq D(P_n)$

Proof:
Take a spanning tree.

If more time remains, talk about rooted trees, levels of trees, regular or balanced trees, and infinite trees. You could define the free monoid if desired.
Today we’re concerned with counting the number of trees on a specified vertex set. (not up to isomorphism)

2 vertices (1 and 2) - 1 tree
3 vertices (1, 2, 3) - 3 trees
4 vertices (1, 2, 3, 4) - 16 trees

To figure out a clever way to count trees, we’ll use an algorithm to represent a tree on a given vertex set $S \subseteq N$

Algorithm: (Prufer Codes)

- **Input:** a tree T with a given vertex set $S \subseteq N$
- **Output:** $f(T) = (a_1, \ldots, a_{n-2})$ a list of $n-2$ values in S

At the i-th step of the algorithm, delete the leaf of the current tree with smallest label (in S).
Let a_i be the label of the neighbor of that leaf.

![Graph with Prufer code (3, 1, 1, 2, 2, 3, 3)]

This graph has Prufer code (3, 1, 1, 2, 2, 3, 3)

Question:
What does the tree with Prufer code (3, 7, 1, 2, 2, 7, 8) with $S = [9]$ look like?

Technique for Finding a Graph from a Code:

- Start with a graph on vertex set S with no edges.
 (idea - we’ll go through a loop, each time adding an edge and marking one point)
- At the i-th step:
 - Consider the portion of the Prufer code starting with a_i (ignoring all to the left of this)
 - Not all unmarked vertex labels can occur in this list (too short), let x be the smallest missing unmarked label
 - Include the edge xa_i
 - Mark x
- At the end, two unmarked vertices remain. Connect them.
Theorem: (Cayley's Formula [1889])
For a set $S \subseteq N$ of size n, there are n^{n-2} trees with vertex set S

Proof: (Prufer 1918)
We'll show that our f is a bijection.

We proceed by induction on n. The $n = 1$ case is obvious.
The $n = 2$ case is the real base case, having an empty Prufer code.

For $n \geq 3$
Any leaf of T does not appear in the Prufer code $f(T) \equiv a$
In the process of determining the a, the first vertex not appearing in a was some $x \in S$,
the first deleted, and was connected to a_1
Thus, for any T for which $f(T) = a$, x is a leaf of T connected to a_1
Then $T - x$ is a tree which must have Prufer code $(a_2, a_3, ... a_{n-2})$ on set $S \setminus \{x\}$
Use induction hypothesis to show that $T - x$ is uniquely defined.
There's only one way to attach x, so we're done.

This technique of proof gives us an easy way to count the number of trees after specifying each vertex's degree on a specified vertex set.

Corollary:
Given positive integers $d_1, ..., d_n$ summing to $2n - 2$, there are exactly $\frac{(n-2)!}{\prod (d_i-1)!}$ trees with
vertex set $[n]$ such that vertex i has degree d_i for all i

Proof:
If $x \in V(T)$ has degree d, it appears $d - 1$ times in the Prufer code for T
Then we are counting lists of length $n - 2$ with $(d_i - 1)$ indistinguishable entries for each i
Use division rule of combinatorics.

Note:
This counting stuff brings us pretty naturally to our main topic for this section - counting the number of spanning trees in a graph.
This is an incredibly important task for understanding properties of a graph.
Applications in circuit design, social network analysis, clique-finding, and so on

Each distinct tree on a specified vertex set S is a spanning tree in the complete graph on S
So we've solved this counting problem for complete graphs!

What about other graphs?

Example:
Consider the house

Spanning trees either do or do not contain the right roof segment.
We can generalize the idea of counting used above.

Definition:
In a graph G, the \textit{contraction} of edge e with endpoints u, v is the graph denoted $G \cdot e$, with u, v amalgamated into a single vertex. For each edge other than e incident on u or v (with multiplicity) draw an edge incident on that new vertex.

(draw an example)

Note:
The contraction of a graph is NOT necessarily a subgraph!

Proposition:
Let $\tau(G)$ denote the number of spanning trees of the graph G. For $e \in E(G)$ not a loop,
$\tau(G) = \tau(G - e) + \tau(G \cdot e)$

Proof:
Spanning trees that omit e are spanning trees of $G - e$
We define a bijection from spanning trees of G including e to spanning trees of $G \cdot e$

For any spanning tree T of G including e, the contraction of e in T yields a spanning tree of $G \cdot e$ (it is spanning with right number of edges)
All other edges maintain their identity and labels under contraction, so no two distinct spanning trees of G can map to the same spanning tree of $G \cdot e$

This can be undone by expanding the contracted edge back out, so the described function is a bijection.

Note:
This turns the task of finding spanning trees for a graph with e edges into the task of finding all spanning trees of two graphs with $e - 1$ edges

-- Very inefficient algorithm

Can be improved slightly with the following remark.

Remark:
If G is a connected loopless graph with no cycle of length at least 3, then $\tau(G)$ is the product of the edge multiplicities. A disconnected graph has no spanning trees.

This algorithm is still terrible. Making this into a computationally tractable task requires some additional cleverness.

Definition:
Given a loopless graph G, the \textit{Graph Laplacian} is the matrix $L = D - A$ with A the adjacency
matrix of G and D the diagonal matrix of vertex degrees.
(some people might term this the negative Laplacian, it depends on who you ask)

This matrix contains an *incredible* amount of information about a graph, and is one of the
main conduits for linear algebra techniques into graph theory.

Note:
Why is this related to the second derivative?

\[
\delta f(x) = f(x + 1) - f(x) \\
\delta^2 f(x) = \delta f(x) - \delta f(x - 1) = f(x + 1) - 2f(x) + f(x - 1)
\]

Theorem: (Matrix Tree Theorem)
Given a loopless graph G with vertex set $v_1, ..., v_n$. Let Q be the graph Laplacian of G. Then \(\tau(G)\) is given by any entry in the cofactor matrix of G.
That is to say, if Q^* is the matrix formed from Q by deleting row s and column t, then

\[
\tau(G) = (-1)^{s+t} \det Q^*
\]

Let's do at least one example before we delve into the fairly complicated proof.

Do the graph on 4 vertices with only one edge missing (the kite). (degree sequence 3 3 2 2)
Should get 8 spanning trees.

Proof:

Lemma 1:
If M is a matrix such that the entries of M in each row sum to 0, then the cofactors of M
are constant in each row.

[this is a fairly technical little linear algebraic lemma, the strategy to prove it is to note that
the cofactor matrix is related to the determinant of a matrix to the matrix inverse if it exists]
We use that lemma to argue that it suffices to consider $s = t$

(write out the example from the book and use it as a reference for students as you go)

Lemma 2:
If D is an orientation of G and M the incidence matrix of D, then $Q = MM^T$

Proof:
(recall with edges $e_1, ..., e_m$ the incidence matrix consists of values m_{ij} which are 1 if v_i
is the tail of e_j, -1 if its the head, and 0 else)
The entry at index i, j in MM^T is the dot product of rows i and j of M
If $i \neq j$, this product includes a -1 for each edge between v_i and v_j
If $i = j$, this includes a $+1$ for each incident edge in G

(do an small example if people look very confused?)

Lemma 3:
If D is an orientation of G and M is the incidence matrix of D, let B be a $(n - 1)$ by $(n - 1)$
submatrix of M. Then $\det B = \pm 1$ if the corresponding $n - 1$ edges form a spanning

Proof:
In the case where the edges form a spanning tree, we proceed by induction on \(n \).
If \(n = 1 \), we have a 0x0 submatrix which we’ll definitionally take to have determinant 1.
If \(n > 1 \)

Let \(T \) be the spanning tree. It has at least two leaves, such as \(x \), at least one of which is represented in the matrix.
The row corresponding to \(x \) has only one non-zero entry in \(B \).
Compute determinant by expanding along this row.
Only relevant \((n - 2)\) by \((n - 2)\) matrix is a submatrix of the adjacency matrix for \(D - x \).

By inductive hypothesis, the determinant is \(\pm 1 \) if \(T - x \) is a spanning tree (which it is).

On the other hand, if edges corresponding to columns of \(B \) do not form a spanning tree, they contain a cycle \(C \).
Take a linear combination of columns \(c_i \) by

\[
a_1 c_1 + a_2 c_2 + \cdots + a_{n-1} c_{n-1}
\]

with \(a_i = 0 \) if the corresponding edge is not in \(C \), \(+1\) if followed in the right direction by \(C \), \(-1\) if followed in reverse direction by \(C \).
Result must be 0 at each vertex, hence columns are linearly dependent, so \(\det = 0 \.

(We need one more tool from linear algebra)

Theorem: (Binet-Cauchy Formula)

For \(A \) an \(n \) by \(m \) matrix and \(B \) an \(m \) by \(n \) matrix with \(m \geq n \), then

\[
\det AB = \sum_S \det A_S \cdot \det B_S
\]

where the sum runs over all subsets of size \(n \) in \([m]\), and \(A_S, B_S \) are the submatrices consisting of rows with indices in \(S \).

Now, we use these lemmas to determine \(\det Q^* \)

Let \(M \) as in the above lemmas, and \(M^* \) the result of deleting row \(t \) of \(M \)

Note \(Q^* = M^*(M^*)^T \) by Lemma 2

If \(m < n - 1 \), rows are linearly dependent so the determinant is 0. We assume \(m \geq n - 1 \)

Apply Binet-Cauchy to \(Q^* \). In this case, the two matrices are transposes of one another, so have equal determinants.

Apply Lemma 3 to see that the sum reduces to a sum over edge sets which are spanning trees.

Decompositions and Graceful Labelings

We can decompose any graph into a union of edges, that is to say, trees of size 2. When can we decompose a graph \(G \) into copies of a larger tree \(T \)?

Certainly we need \(e(T) \) to divide \(e(G) \), and certainly \(\Delta(T) \leq \Delta(G) \)

These conditions are not sufficient, though.

Conjecture: (Ringel 1964)

If \(T \) is a fixed tree with \(m \) edges, then \(K_{2m+1} \) decomposes into \(2m + 1 \) copies of \(T \)

This conjecture is hard to approach directly, so work focuses on a stronger conjecture.

Definition:

A *graceful labeling* of a graph \(G \) with \(m \) edges is a function

\[
f : V(G) \rightarrow \{0, \ldots, m\}
\]
such that distinct vertices are assigned distinct numbers and
A graph that admits a graceful labeling is called \textit{graceful}. This property amounts to requiring that the difference in labels across any edge in the graph is distinct.

\textbf{Conjecture:} (Graceful Tree Conjecture - Kotzig, Ringel 1964)
Every tree has a graceful labeling.

While obviously we can't prove any open conjectures in class, we can prove that this conjecture would imply the previous one.

\textbf{Theorem:} (Rosa 1967)
If a tree T with m edges has a graceful labeling, then K_{2m+1} admits a decomposition into $2m + 1$ copies of T.

\textbf{Proof:}
Consider vertices of K_{2m+1} as congruence classes modulo $2m + 1$.
Define subgraphs T_0, \ldots, T_{2m} by

$V(T_i) = \{i, i + 1, \ldots, i + m\}$

$E(T_i)$ contains an edge between $i + r$ and $i + s$ iff the graceful labeling of T contains an edge between labels r and s.

Every edge of K_{2m+1} is contained in some T_i, because:
There exists vertices in the labeling of T with any specified difference, so just translate the values until they match.

No edge mm of K_{2m+1} is contained in T_i and T_j for $i \neq j$ because:
then $m - i$ and $m - j$ are adjacent in T.
and $n - i$ and $n - j$ are adjacent in T.
This violates the property of a graceful labeling, that all label differences occur only once.

\textbf{Note:}
While it is hard to find graceful labelings for any arbitrary tree, there are a lot of trees where a strategy is known.

\textbf{Definition:}
A \textit{caterpillar} is a tree in which a single path (the \textit{spine}) is incident to (or contains) every edge.

\textbf{Theorem:}
A tree is a caterpillar iff it does not contain the tree Y.

\textbf{Proof:}
Let T be a tree, and T'' the tree with all leaves deleted.
T contains Y iff T'' is has a vertex of degree 3 (thus not a path).
If T'' is a path, it's a spine.

\textbf{Spanning Trees in Digraphs}
We can talk about spanning trees in digraphs as well - there's a more general theorem that implies our former counting one for graphs when a digraph is symmetric.

Definition:
A *branching* or *out-tree* is an orientation of a tree having a root of indegree 0 and all other vertices of indegree 1.
An *in-tree* is an out-tree with reversed orientation.

Theorem: (Directed Matrix Tree Theorem - Tutte 1948)
Given a loopless digraph G, let $Q^- = D^- - A$ and $Q^+ = D^+ - A$ with $D^- (D^+)$ the diagonal matrix of indegrees (out-degrees) of vertices of G and
\[A = (a_{ij}) \]
the matrix with a_{ij} = the number of edges from v_j to v_i
The number of spanning out-trees (in-trees) of G rooted at v_i is the value of any cofactor in the ith row of Q^- (ith column of Q^+).

We won't discuss a proof of this, though similar ideas are involved as in our proof for graphs.

There are some nice results about our ability to produce search algorithms that are related to this theorem.

Lemma:
If G is a strong digraph, then every vertex is the root of an out-tree (and an in-tree).

Proof:
Fix a vertex, iteratively add edges to produce an out-tree on a growing set S, there must exist an edge leaving S by strong connectivity.

Having an in-tree is also really helpful for finding Eulerian circuits!

Algorithm: (Eulerian circuit in a digraph given a spanning in-tree)
Input: Eulerian digraph with no isolated vertices and a spanning in-tree T consisting of paths to a vertex v

Strategy:
First, for each vertex u, list the edges leaving u in an arbitrary order, with the one leaving it that is contained in T listed last (for v, all are arbitrary).

Begin at v. At each step, traverse the first not-already-traversed edge leaving the current vertex listed on that vertex's outward edge list.
Eventually you will end at v with no more edges to traverse.

Claim: (I won't prove this)
The algorithm above always produces an Eulerian circuit.
In applications, the structure of a graph is often insufficient for purposes at hand.

Definition:

A *weighted graph* is a graph with numerical labels on edges.

Labeling edges and vertices in different ways is a great way to make the structure of a graph relevant to a problem at hand.

We often interpret such weights as distances, in which case we must require that they be *non-negative* (or sometimes strictly *positive*).

Optimization problems can be asked about various features of weighted graphs.

Task: Find the spanning tree of a connected weighted graph with minimum weight

Algorithm: (Kruskal's Algorithm - for minimum spanning trees [a greedy algorithm])

Input: a weighted connected graph G

Idea: Work with an acyclic spanning subgraph and expand it piecemeal with low weight edges.

Set H as the empty graph on our vertex set.

Loop:

Among edges of G between two distinct components of H, pick the one of lowest weight

Add it to H

This is a pretty naïve algorithm, but it happens to be optimal and really easy to implement, which is awesome.

Theorem: (Kruskal 1956)

The above algorithm produces a minimum weight tree.

Proof:

The algorithm does construct a tree, since G is connected and H is always acyclic.

Let T' be the produced tree and T'' a minimal tree. If $T' \neq T''$ then there is some first edge e picked in the construction of T' not present in T''

$T' + e$ contains a cycle with some e' not in T

Consider $T' + e - e'$

At the step of the construction of T that picked e, e and e' were both available

Hence $w(e) \leq w(e')$

So $T' + e - e'$ has either equal (if so, repeat the argument - having a spanning tree which contains even more early vertices of T) or strictly less weight than T'', a contradiction.

Task:

Find the shortest path between two points.

This is a particularly famous algorithm, built on the idea that if the shortest path from a to b goes through c, then necessarily it must be the case that the subpath from a to c is also shortest.
Definition:
In a weighted graph, the *distance* \(d(a, b)\) between two points is the sum of the weights of the shortest path between two points.

Algorithm: (Dijkstra's Algorithm)

Input: A graph (or digraph) with non-negative edge weights and an initial vertex \(u\)
- Weights \(w(xy)\) for vertices \(xy\) with weight understood as \(\infty\) if \(xy\) is not an edge in the graph

Idea: \(S\) will be the set of vertices whose smallest path is known
- \(t: V(G) \rightarrow R\) will be the shortest path from \(u\) to other vertices known so far

Set \(S = \{u\}\), \(t(u) = 0\), \(t(z) = w(uz)\) for all \(z \neq u\)

Loop:
- Select \(v\) outside \(S\) with \(t(v)\) minimized, add \(v\) to \(S\)
- For each edge \(vz\) between \(v\) and a vertex \(z \notin S\)
 - Update \(t(z) = \min\{t(z), t(v) + w(vz)\}\)

Stop if \(S\) contains all vertices or \(t(z) = \infty\) for all \(z \notin S\)

Set \(d(u, v) = t(v)\) for all \(v\)

(again through an example of this algorithm operating, just draw an arbitrary graph to do it)

Theorem:
Given a graph or digraph \(G\) and a vertex \(u \in V(G)\), Dijkstra's Algorithm computes \(d(u, z)\) for every \(z \in V(G)\)

Proof:
We claim two things are true while the algorithm is operating
1) If \(z \in S\), then \(t(z) = d(u, z)\)
2) If \(z \notin S\), then \(t(z)\) is the least length of a \(u, z\) path reaching \(z\) directly from \(S\)

We prove these by induction on the size of \(S\).
Both immediately true when size is 1.

Inductive step:
- Let \(v\) be the vertex not in \(S\) with smallest \(t(v)\).
- The algorithm will choose \(v\)
- By inductive hypothesis, the shortest path to \(v\) from \(S\) is \(t(v)\) [by minimality of \(v\)]
 - Then after updating \(t\), \(d(u, v) = t(v)\)

For all other vertices \(z \notin S\), we must now consider paths through \(S\) that go to \(v\) and then directly on to \(z\)
- If this is shorter, it's accounted for. If it isn't, then we don't change \(t\)

Note:
If we apply Dijkstra's algorithm to an unweighted graph, the result is known as a *Breadth-First Search* algorithm
Definition:

A rooted tree is a tree with one vertex \(r \) chosen as root. For each vertex \(v \), let \(P(v) \) be the unique path from \(r \) to \(v \). The parent of \(v \) is its neighbor in \(P(v) \). The children of \(v \) are all other neighbors. The ancestors are the vertices of \(P(v) - v \). The descendants are vertices \(u \) such that \(P(u) \) contains \(v \). The leaves are vertices with no children.

A rooted plane tree or planted tree is a rooted tree with a left-to-right ordering specified for the children of each vertex.

(draw)

Though all such trees are important mathematically, in applications binary trees are often most significant.

Definition:

A binary tree is a rooted plane tree where each vertex has at most two children (denoted left child or right child). The subtrees rooted at the children of the root are the left subtree and right subtree.

A \(k \)-ary tree has at most \(k \) children from each vertex.

Application - Data Compression:

Suppose I am sending you a message, built out of symbols from some alphabet \(S \). To transmit it to you, I need to convert it into binary.

I want to send the message using as few bits as possible (compression). But, I need you to be able to read the message, so whatever I do to it must be reversible.

Strategy:

For each symbol in \(S \), replace it with a binary string (its code). If the symbol appears a lot in the message, make the code short. If the symbol appears infrequently, the code can be longer. Send a table listing these conversions along with the message. (the message should be much bigger than the table)

For this strategy to be coherent, the recipient needs to be able to break up a long binary string into segments each corresponding to individual symbols. Since the segments may be different lengths, this can be tricky.

Idea:

If no code for a symbol is the initial part of another symbol’s code, we’ll be able to undo the compression. This gives us a prefix-free condition.

Equivalently, this lets us draw the codes as leaves of a rooted binary plane tree (draw an example)

Algorithm: (Huffman Coding 1952)

Input: Weights (frequencies or probabilities) \(p_1, \ldots, p_n \) of each symbol
Output: Prefix-free codes (in the form a binary tree with n leaves)

View each weight as a vertex.
If $n = 1$, we're done
If $n \geq 2$, pick the two smallest weights and make them both children of a single vertex.
 Delete them from the list of weights and place their sum in the list of weights.

Theorem:
Given a probability distribution $\{p_i\}$ on n items, Huffman's algorithm produces the prefix-free code with minimum expected length.

Proof: (maybe don’t prove this?)

Note:
It is not always the case that prefix-free codes give the best possible compression of a message. Sometimes, different compression schemes are better.
There’s some really fascinating mathematics involved in this subject.
One can look to Shannon 1948 for the really interesting result

Theorem:
Given a probability distribution $\{p_i\}$ on n items, any code for those items has expected average length at least

$$H(p) = - \sum p_i \log_2 p_i$$

This value is called the entropy.
In this section, we'll be translating a couple of common types of questions into graph theoretic terms. This will lead us to some interesting properties of graphs.

Definition:
A matching M in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching are said to be saturated by M. Other vertices are unsaturated. A perfect matching is a matching for which all vertices are saturated.

(draw an example)

Question:
What can we say about the incidence matrix of a matching?

Question:
How many perfect matching are there in a complete graph on $2n$ vertices?

$(2n - 1)(2n - 3) \cdots (3)(1)$

Note:
Not all graphs have perfect matchings!

In general, we'll be interested in asking how large of a matching we can find for a given graph

Definition:
A maximal matching in a graph is a matching that cannot be enlarged by adding an edge. A maximum matching is a matching with the largest size among all matchings in a graph.

Note:
A maximum matching is maximal.
A maximal matching need not be a maximum.

(The middle edge in P_4 is a maximal matching, but not a maximum)

This example illustrates a bit of how we may enlarge matchings.

Definition:
An M-alternating path for a matching M is a path that alternates between edges in M and edges not in M. An M-alternating path whose endpoints are unsaturated by M is an M-augmenting path.

Claim:
If we have an M-augmenting path, then M is not maximal.

Definition:
Given graphs G and H, the symmetric difference is the subgraph of $G \cup H$ with edge set $E(G) \Delta E(H)$
Lemma:
Every component of the symmetric difference of two matchings is a path or an even cycle.

Proof:
Let \(F = M \Delta M' \). No vertex in \(F \) has degree larger than 2, so \(F \) is a disjoint union of paths and cycles. Cycles must alternate between elements of the two matchings, so even length.

Theorem: (Berge 1957)
A matching \(M \) in a graph \(G \) is a maximum matching in \(G \) if and only if \(G \) has no \(M \)-augmenting path.

Proof:
We already know one direction. Suppose \(M \) is not a maximum matching, so \(M' \) is a strictly larger matching. Consider \(F = M \Delta M' \).

Each cycle in \(F \) has the same number of elements from each matching, so there must be a path. This is \(M \)-augmenting.

Broad Setting:
Suppose you are running a hiring committee to hire several new staff members in an organization. \(X \) is the set of open jobs. \(Y \) is the set of applicants. Each applicant is well-suited to some subset of the jobs. As the hirer, you'd like each job opening to be filled by a single, distinct, suitable applicant.

The setup indicates a "suitability" graph which is \(X, Y \)-bipartite and indicates that we wish to find a matching that saturates \(X \).
(Alas, as the hirer, we don't really care whether or not it saturates \(Y \) - some candidates may need to apply elsewhere.)

Note:
In this setting, any such matching is necessarily a maximum.

Theorem: (Hall's Theorem - P. Hall 1935)
An \(X, Y \)-bipartite graph \(G \) has a matching that saturates \(X \) if and only if \(|N(S)| \geq |S| \) for all \(S \subseteq X \)
(Hall's Condition)

Proof:
This is clearly necessary, for any such matching must only touch neighbors of elements of \(X \).

Let's suppose that \(M \) is a maximum matching in \(G \) and \(M \) does not saturate \(X \).
Want to show that there is a set \(S \) such that \(|N(S)| < |S| \).

Fix \(u \in X \) unsaturated by \(M \).
Let \(Z \) be the set of vertices reachable from \(u \) by \(M \)-alternating paths.
\[
S \text{ the subset of } Z \text{ unsaturated by } M \\
T = Z \setminus S \\
\text{Claim that } M \text{ matches } T \text{ to } S \setminus \{u\}, \text{ so that } |T| = |S| - 1, \text{ and that } N(S) = T
\]

Corollary:
For \(k > 0 \), every \(k \)-regular bipartite graph has a perfect matching.

Proof:
If \(G \) is an \(X,Y \)-bigraph, regularity implies \(|X| = |Y| \). Thus any matching satisfying Hall’s condition is a perfect matching.

Note:
This is a pretty special case where we know about perfect matchings. Can we get at maximum matchings more easily?

Getting a lower bound on the size of a maximum matching is easy - just find a matching.

Getting an upper bound is quite hard!

Likewise, if I give you a matching, you likely don’t want to find out if it is maximal by looking for an \(M \)-augmenting path.

We need a better way of reasoning about such things.

Definition:
A *vertex cover* of a graph \(G \) is a set \(Q \subseteq V(G) \) that contains at least one endpoint of every edge.

Vertices in \(Q \) are said to cover \(E(G) \)

Idea:
Suppose I give you a vertex cover of a graph and a matching of a graph.

Each edge in the matching has two distinct endpoints, at least one of which is in the vertex cover.

Hence, the cardinality of the vertex cover is at least that of the matching

\[
\text{-- every vertex cover is at least as large as every matching of a graph}
\]

(Think about street crossings as edges and the roads they are on as vertices. How many people are needed to monitor all of the street crossings?)

Theorem: (Koenig 1931, Egervary 1931)
If \(G \) is bipartite, then the maximum size of a matching in \(G \) equals the minimum size of a vertex cover of \(G \)

Proof:
\(G \) an \(X,Y \)-bigraph
Let \(Q \) be a minimum size vertex cover of \(G \). We already know every matching is at most the size of \(Q \).

Let \(R = Q \cap X \) and \(T = Q \cap Y \)

Consider subgraphs induced by \(R \cup (Y - T) \) and \(T \cup (X - R) \), call them \(H \) and \(H' \)

Claim:
\(H \) has a matching that saturates \(R \) into \(Y - T \) and \(H' \) a matching that saturates \(T \) into \(X - R \)

If we have that, since \(R \cup T = Q \), we have a matching of size \(|Q| \)
Proof of Claim:

G has no edges from $Y - T$ to $X - R$ (one of the endpoints points would have to be included in Q)

Let $S \subseteq R$ and consider $N_H(S) \subseteq Y - T$

If $|N_H(S)| < |S|$, then remove S from Q and put $N_H(S)$ in instead. Q is now strictly smaller, a contradiction.

Hence Hall’s condition is satisfied.

The equivalent works for H'

(First lecture ended here)

Note:

Observe that for bipartite graphs, this turns the problem of finding a maximum matching into an equivalent question about minimizing vertex covers. Finding a lower bound of size is easy (just find a matching). Finding an upper bound of size is easy (just find a vertex cover). This makes it a great optimization problem.

This kind of setup in an optimization problem is called a **min-max relation**.

In some generality, we may have a maximazation problem M and a minimization problem N on the same class of objects (like graphs) such that for every candidate solution M to M and every candidate solution N to N the value of M is at most that of N.

Such problems are often called **dual optimization problems**.

If we have dual problems, finding candidate solutions of equal size guarantees that both are optimal, and gives a min-max relation.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**Definition:**

The **independence number** of a graph is the maximum size of an independent set of vertices.

**Definition:**

An **edge cover** of $G$ is a set $L$ of edges such that every vertex of $G$ is incident to some edge of $L$.

Vertices of $G$ are said to be **covered** by the edges of $L$.

**Note:**

A perfect matching is an edge cover with $n(G)/2$ edges.

Any matching is an edge cover of the subgraph of saturated vertices.

This problem is ultimately quite related to the previous, so we’ll introduce some terminology for convenience.

**Definition:**

The maximum size of an independent set is $\alpha(G)$.

The maximum size of a matching is $\alpha'(G)$.

The minimum size of a vertex cover is $\beta(G)$.

The minimum size of an edge cover is $\beta'(G)$.

These quantities tend to be fairly interrelated.

**Note:**

Koenig-Egervary theorem says $\alpha'(G) = \beta(G)$ for bipartite graphs.

We’ll want to show that $\alpha(G) = \beta'(G)$ for bipartite graphs without isolated vertices.
**Notation:**
For a subset of $V(G)$, we'll use an overline to indicate the complement within $V(G)$

**Lemma:**
In a graph $G$, $S \subseteq V(G)$ is an independent set if and only if $\overline{S}$ is a vertex cover.
In particular, $\alpha(G) + \beta(G) = n(G)$

**Proof:**
Let $S$ be an independent set. Then every edge has at least one-endpoint on a vertex in $\overline{S}$. Then $\overline{S}$ is a vertex cover.
The logic works in both directions.

Taking a maximum independent set gives the desired result.

**Theorem:** (Gallai 1959)
If $G$ is a graph without isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$

**Proof:**
Let $M$ be a maximum matching. For each unsaturated vertex, add one edge to $M$ to obtain an edge cover $L$.
The number of vertices covered by $L$ is $2$ for each edge in $M$, and $1$ for each edge not in $M$, so $2|M| + (|L| - |M|) = n$.
Thus, $|L| = n - |M|$
Hence, $\beta'(G) \leq n(G) - \alpha'(G)$

Let $L$ be a minimum edge cover. For any edge $e \in L$, if both endpoints are incident on other edges in $L$ then $e \notin L$ by minimality.
Hence, any component formed by edges in $L$ has radius $1$ (only one vertex can have degree bigger than $1$), so is a star.
Let $k$ be the number of components. Each non-central vertex in a star is a leaf, so $|L| = n - k$
Choose one edge from each component to form a matching $M$ with $|M| = n - |L|$
Hence $\alpha'(G) \geq n(G) - \beta'(G)$

**Corollary:** (Koenig 1916)
If $G$ is a bipartite graph with no isolated vertices, then $\alpha(G) = \beta'(G)$

**Proof:**
Use the previous two results and the Koenig-Egervary relation
Problem: How do we actually find a maximum matching in a bipartite graph?

Idea: Look for augmenting paths

**Algorithm:** (Augmenting Path Algorithm)

**Input:** An $X, Y$-bipartite graph $G$, a matching $M$ in $G$, the set $U$ of $M$-unsaturated vertices in $X$

**Idea:** Explore all $M$-alternating paths from $U$. For each vertex we reach, record how we got there.

- $S \subseteq X$ and $T \subseteq Y$ the explored sets

First, set $S = U$ and $T = \emptyset$

Loop:

- If all vertices in $S$ are marked, stop. $T \cup (X \setminus S)$ is a minimum cover, $M$ is a maximum matching.

Select an unmarked $x \in S$. Consider all $y \in N(x)$ with $xy \notin M$

- If $y$ is unsaturated, we have an augmenting path.
- If $y$ is saturated, there exists $w \in X$ such that $wy \in M$
  - Add $y$ to $T$ and $w$ to $S$

After all such $y$ are explored, mark $x$

**Theorem:**
Repeatedly applying the Augmenting Path algorithm to a bipartite graph produces a matching and a vertex cover of equal size.

**Proof:**
- If algorithm produces an augmenting path, we can use it to produce a strictly larger matching. This can only happen finitely many times.

- If algorithm outputs a set $Q = T \cup (X \setminus S)$ and a matching $M$, we need to show that the former is a vertex cover, the latter is a matching, and they have equal size. $M$ is certainly a matching.

To show vertex cover, we need to argue that no edge connects $Y \setminus T$ and $S$

- If one did, it would connect some $x \in S$ to some $y \in Y \setminus T$. If $y$ is unsaturated, augmenting path, if saturated the algorithm should have explored it before marking $x$

Any point in $T$ is saturated, because the algorithm would have found an augmenting path otherwise. Necessarily $U \subseteq S$, since $S = U$ at the beginning and $S$ grows, so $X \setminus S$ are all saturated as well. Edges in $M$ cannot go between $X \setminus S$ and $T$ (such points in $X$ would be added to $S$), so

$$|M| \geq |T| + |X \setminus S| \geq |Q|$$

No matching is strictly larger than a vertex cover, so they must be equal.

**Note:**
Define big $O$ notation

**Definition:**
The *running time* of an algorithm is the max number of computational steps used expressed as a function of the size of the input.
Definition:
A good algorithm is one with polynomial running time.

Remark:
If $G$ is an $X,Y$-bigraph with $n(G) = n$ and $e(G) = m$, then since $\alpha'(G) \leq \frac{n}{2}$, we need only run the algorithm above at most $n/2$ times.
Each time we run the algorithm, it examines each vertex at most once, then marks it. Thus we traverse each edge at most once.
That means the number of edge explorations we have to do to find a max matching is $O(nm)$
There are better algorithms.

Problem:
What if our graph is weighted, and we’re interested in finding a matching of maximum total weight?

(It suffices to consider $K_{n,n}$ by adding vertices and edges of weight 0, and it suffices to consider non-negative weights since we may simply set negative weights to 0 then solve the problem then delete edges with 0 weight to solve the original.)

On $K_{n,n}$ with non-neg weights, some maximum weighted matching is perfect, so we need only find a maximum perfect matching.

Much as with the standard maximum matching problem, we can dualize this one, which will help.

Side Note:
If we can solve this problem, we can also solve the problem of finding a perfect matching of minimum weight. To do so, just pick $M$ really really large, and compute $M$ minus the weights, then maximize.

(lecture ended here)

Example:
A farmer owns $n$ farms ($X$) and $n$ processing plants ($Y$)
Each plant is capable of processing the amount of crops grown on one farm.
The profit from sending the crops from farm $x_i$ to plant $y_j$ is $w_{ij}$
We have an $X,Y$-bigraph with weights $w_{ij}$
Maximizing profit is a weighted maximum matching problem.

The government thinks too much corn is being produced, so offers payments to farmers in exchange for not growing and processing corn.
Government will pay $u_i$ in exchange for farmer not using farm $x_i$ and will pay $v_j$ in exchange for farmer not using plant $y_j$.
If $u_i + v_j < w_{ij}$, then the farmer is incentivized to use the edge to make more money.
If $u_i + v_j > w_{ij}$, then the farmer is incentivized to take the government payout.
The government thus wants to make sure that $u_i + v_j \geq w_{ij}$ for all $i,j$.
But, to do so for the least cost, the government wants to minimize $\sum u_i + \sum v_j$

Definition:
A transversal of an $n$-by-$n$ matrix consists of $n$ positions in the matrix, one in each row and
Finding a transversal with maximum sum is the Assignment Problem. This is just a matrix way of writing the maximum weighted matching problem for non-negative weights. Maximizing the total weight \( w(M) \) is the goal.

A weighted cover is a choice of labels \( u_1, ..., u_n \) and \( v_1, ..., v_n \) such that \( u_i + v_j \geq w_{ij} \) for all \( i, j \).

The cost \( c(u, v) \) of a cover is \( \sum u_i + \sum v_j \).

The minimum weighted cover problem is finding a cover with minimum cost.

Lemma: (Duality of weighted matching and weighted cover problems)
For a perfect matching \( M \) and weighted cover \( (u, v) \) in a weighted bipartite graph \( G \)
\[ c(u, v) \geq w(M) \]
Moreover, \( c(u, v) = w(M) \) if and only if \( M \) consists of edges \( x_iy_j \) such that \( u_i + v_j = w_{ij} \).
In this case, both \( M \) and \( (u, v) \) are optimal.

Proof:
\( M \) saturates all vertices, so for edge each \( x_iy_j \in M \), we have \( u_i + v_j \geq w_{ij} \). Each vertex is accounted for once, so adding these up gives the result.

Equality is only obtained if each of these inequalities is an equality.

Duality gives optimality.

Definition:
The equality subgraph \( G_{u,v} \) for a weighted cover \( (u, v) \) is the spanning subgraph of \( K_n, n \) whose edges are the pairs \( x_iy_j \) such that \( u_i + v_j = w_{ij} \).
In the cover, the excess for \( i,j \) is \( u_i + v_j - w_{ij} \).

Idea:
We want to find a cover \( (u, v) \) such that \( G_{u,v} \) has a perfect matching. If \( G_{u,v} \) has a perfect matching, then so does \( K_n, n \). The weight of this matching is \( \sum u_i + \sum v_j \) and it must thus be optimal.

If \( G_{u,v} \) has no perfect matching, find a maximum matching \( M \) in \( G_{u,v} \) and a minimum vertex cover \( Q \)
Set \( R = Q \cap X \) and \( T = Q \cap Y \).
Matching has \( |R| \) edges from \( R \) to \( Y - T \) and \( |T| \) edges from \( T \) to \( X - R \).
Change \((u, v)\) to preserve weight equality on all edges in \( M \), but to cause zero excess on an edge from \( Y - T \) to \( X - R \).
We now have a strictly larger maximum on this new \( G_{u,v} \).
To do this change:
Call \( \epsilon \) the min excess of all edges from \( Y - T \) to \( X - R \).
For all \( x_i \in X - R \), reduce \( u_i \) by \( \epsilon \).
For all \( y_j \in T \), increase \( v_j \) by \( \epsilon \).

(draw the picture from the book)

Algorithm: (Hungarian Algorithm - Kuhn 1955 and Munkres 1957)
Input: A matrix of weights on the edges of \( K_n, n \) with bipartition \( X, Y \)
Let \((u, v)\) be a cover with \(G_{u,v}\) spanning (one can take \(u_i = \max_j w_{ij}\) and \(v_j = 0\))

Loop:
- Find a maximum matching \(M\) in \(G_{u,v}\)
  - If \(M\) is perfect, stop. \(M\) is a maximum weight matching

Otherwise, let \(Q\) be a minimum vertex cover in \(G_{u,v}\), let \(R = Q \cap X\) and \(T = Q \cap Y\)
- Let \(\epsilon = \min\{u_i + v_j - w_{ij} : x_i \in X - R, y_j \in Y - T\}\)
- Decrease \(u_i\) by \(\epsilon\) for all \(x_i \in X - R\). Increase \(v_j\) by \(\epsilon\) for \(y_j \in T\)
- Use these new values as a new cover that has less cost.

(You can think of this entire algorithm using matrices, by writing the matrix of excesses. The equality subgraph corresponds to entries in the matrix which are equal to 0.)

(Consider doing an example, just write out an arbitrary 5x5 or 4x4 matrix of non-negative weights, it should work out.)

**Theorem:**
The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

**Proof:**
If the algorithm terminates, we’re done.

Denote \((u, v)\) the current cover and suppose we have no perfect matching in \(G_{u,v}\) yet. Denote \((u', v')\) the modified cover. Necessarily \(\epsilon > 0\), so \((u, v) \neq (u', v')\)
For any edges between \(R\) and \(Y - T\), no excess has changed.
Likewise for edges between \(X - R\) and \(T\)
For edges between \(X - R\) and \(Y - T\), \(u'_i + v'_j = u_i + v_j - \epsilon\), so by the choice of \(\epsilon\) the weight is still covered
For edges between \(R\) and \(T\), \(u'_i + v'_j = u_i + v_j + \epsilon\), so the weight is still covered
Thus \((u', v')\) is still a cover.

We need only argue now that the algorithm terminates in finite time. (This is actually fairly tricky)

**Easier Case with a more Straightforward Argument:**
If I can assume the weights are rational, then WLOG I can assume they’re integers by clearing denominators.
Then \(\epsilon \geq 1\) in every step, and the cost of the cover is reduced in every step by an integer amount.
The cost started out finite, and is bounded below by the weight of a matching. Thus, the algorithm terminates after finitely many steps.

**Harder Case:**
If the weights are real numbers, we need to work harder. The issue is that the matching doesn't have to strictly increase in size every iteration of the loop. Instead, what we have to show is that if we keep running the loop, it eventually increases.

**Claim:**
If we run the loop of the Hungarian algorithm $n$ times, the matching will increase in size at least once.

**Proof of Claim:**
Let $M$ be a maximum matching at some step with corresponding minimum vertex cover $Q$.

- The augmenting path algorithm gives us this cover by exploring $M$-alternating paths from $U$ the set of unsaturated vertices.
- Let $S$ denote the reachable set in $X$ and $T$ the reachable set in $Y$.
- The vertex cover was $R \cup T$ with $R = X \setminus S$.

If we apply an iteration of the Hungarian algorithm loop using this vertex cover, equality is maintained for all edges in $M$.

- Edges from $T$ to $R$ vanish from $G_{u,v}$, but no $M$-alternating paths traversed those edges so that changes nothing.
- A new edge from $S$ to $Y - T$ appears.
  - If it creates an $M$-augmenting path, we have a strictly larger matching.
  - If not, $U$ is unchanged but $T$ is now larger (we can reach the new point through the new edge).
    - $T$ can only increment in size at most $n$ times, so eventually we will be forced to hit the other case.

(Optional: Decide whether to discuss any of this which follows)

Problem:
Stable matchings

Suppose $n$ applicants are applying for $n$ job positions.

Each applicant has an ordered preference list of the positions they want.
Each job position has an ordered ranking of the best candidates for that position.

Suppose I gave you a matching
- Specify an applicant $x$ and a position $a$, supposing they aren't matched.
- Suppose $x$ prefers $a$ over their current match and $a$ prefers $x$ over their current match.
- Then $x$ and $a$ might renege on the agreement and match each other.
  - We say $(x,a)$ is an unstable pair.

Definition:
A perfect matching is a stable matching if it has no unstable unmatched pair.
Does a stable matching necessarily exist, and can we find it?

**Algorithm:** (Gale-Shapley Proposal Algorithm)

- This is actually a great paper, called "College admissions and the stability of marriage"

**Input:** Preference rankings for each applicant and for each job position.

**Loop:**
- Each applicant selects the position highest on their preference list who has not rejected them.
- If all positions get one selecting applicant, use that as the matching.
- Else, for each position with more than one selecting applicant
  - Reject all of them except the one highest on the position's preference ranking
  - Everyone says "maybe" to all remaining selected applicants.

**Theorem:** (Gale-Shapley 1962)

The proposal algorithm produces a stable matching.

**Proof:**

The algorithm definitely produces a matching if it terminates. It must terminate, since the total length of possible unrejected selections decreases every loop.

Suppose the result is not stable, so \((x, a)\) is an unstable pair for some \(x, a\) with \(x \sim b\) and \(y \sim a\)

During the algorithm, \(x\) first selected their favorite position, doing so repeatedly until that job received a better applicant and rejected \(x\)

In particular, over iterations, applicants selects nonincreasing quality matches every round

positions receive nondecreasing quality offers every round

Since \(x\) ended with a worse match than \(a\), they must have selected \(a\) during the algorithm

Since \(a\) ended with a worse match than \(a\), they must have never received an application from \(a\)

Contradiction.
We will be pursuing the analogy of thinking of graphs as networks. We’d like to ask how robust we can make these networks.

In a network, loops are pretty irrelevant, since they don’t affect connectivity at all. We will thus universally assume that graphs have no loops.

**Definition:**
A *separating set* or *vertex cut* of a graph $G$ is a set $S \subseteq V(G)$ such that $G - S$ has more than one component.

The *connectivity* of $G$ is $\kappa(G)$, the minimum size of a vertex set $S$ such that $G - S$ is disconnected or has only one vertex.

A graph is $k$-connected if its connectivity is at least $k$.

**Note:**
$K_n$ has connectivity $n - 1$.
For any graph not containing $K_n$, having connectivity $\kappa(G)$ means there is a separating set of size $\kappa(G)$ and no smaller such sets.

**Question:**
What is the connectivity of $K_{n,n}$?

**Claim:**
The $n$-dimensional hypercube $Q_k$ has connectivity $k$.

**Proof:**
Take the neighbors of a fixed vertex in $Q_k$ to get $\kappa(Q_k) \leq k$.
We prove the other direction by induction.

$Q_0$ and $Q_1$ are complete graphs.

Note that $Q_k$ can be written as two copies $Q, Q'$ of $Q_{k-1}$ linked by a matching between corresponding vertices.

Let $S$ be a vertex cut of $Q_k$.

Suppose first that $Q - S$ and $Q' - S$ are both connected.
Then $S$ contains one endpoint of each matched pair, so $|S| \geq 2^{k-1} > k$.

Then WLOG we may assume $Q - S$ is disconnected, so $|S \cap Q| \geq k - 1$ by Inductive hypothesis.

But $S \cap Q' \neq \emptyset$.
Hence $|S| \geq k$, so $\kappa(Q_k) \geq k$.

**Note:**
For any vertex $v \in V(G)$, $N(v)$ is a vertex cut.
Thus $\kappa(G) \leq \delta(G)$.

We’ve actually discussed how many edges a graph needs to have in order to have $\delta(G) \geq k$.

with a lower bound of $\left\lfloor \frac{k n}{2} \right\rfloor$ edges - achieved by the hypercubes with $n = 2^k$ ($n$ vertices).
Hence we have a lower bound on the number of edges needed for a graph on \( n \) vertices to have \( \kappa(G) \geq k \). We'll show that this is sharp if \( k < n \).

**Example:** (Harary Graphs)

Fix \( 2 \leq k < n \), we define a graph \( H_{k,n} \).
Place \( n \) vertices around a circle at equally spaced points.
If \( k \) is even, make each vertex adjacent to the nearest \( \frac{k}{2} \) vertices in each direction around the circle.
If \( k \) is odd and \( n \) is even, make each vertex adjacent to the nearest \( \frac{k-1}{2} \) vertices in each direction, and adjacent to the opposite vertex.

If \( k \) and \( n \) are both odd, index vertices by integers mod \( n \). Take \( H_{k-1,n} \) and add the edges \( i \leftrightarrow i + \frac{(n-1)}{2} \) for \( 0 \leq i \leq \frac{n-1}{2} \).

(draw)

**Theorem:** (Harary 1962)

\[ \kappa(H_{k,n}) = k, \] so the minimum number of edges in a \( k \)-connected graph on \( n \) vertices is \( \left\lfloor \frac{kn}{2} \right\rfloor \).

**Proof:**

(The case where \( k = 2r \) is even)
Certainly \( \delta(H_{k,n}) = k \), so we need only show \( \kappa(H_{k,n}) \geq k \).

Let \( S \subseteq V(G) \) with \( |S| < k \).
Fix \( u, v \in V(G) - S \).
There is a clockwise \( u, v \)-path and a counterclockwise \( u, v \)-path along the circle, let the interior points of those paths be \( A \) and \( B \).

By Pigeonhole, either \( S \cap A \) or \( S \cap B \) contains fewer than \( \frac{k}{2} \) vertices.
Each vertex is connected to the next \( \frac{k}{2} \) vertices in each direction, so there's still a \( u, v \)-path in that direction.

**Note:**
Going for a direct proof of \( \kappa(G) \geq k \) requires either
- Consider a vertex cut \( S \) and show \( |S| \geq k \).
- Consider a set \( S \) with \( |S| < k \) and show \( G - S \) is connected.
Indirect proofs are usually by contradiction.

There is some art to knowing which will be easier to figure out and which will be easier to write up for any given example.

We now know that there is a required number of edges for a graph to even possibly be \( k \)-connected.
Is there a number of edges that would force it? (This is a question I'll intentionally leave open)
(Note that multiple edges wouldn't really affect anything, so one need consider simple graphs only.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~

Definition:
A 
 disconnecting set
of
edges
is
a
set
$F \subseteq E(G)$
such
that
$G - F$
has
more
than
one
component.
A
graph
is
$k$-edge-connected
if
every
disconnecting
set
has
at
least
$k$
edges.
The
edge-connectivity
of
$G$
is
$\kappa'(G)$,
the
minimum
size
of
a
disconnecting
set.

Definition:
Given $S, T \subseteq V(G)$, we write $[S, T]$ as
the
set
of
edges
with
one
endpoint
in
$S$
and
the
other
endpoint
in
$T$.

An edge cut is an edge set
of the form $[S, V(G) - S]$

(draw a picture)

Note:
Every
disconnecting
set.
The
opposite
is
false.
Every minimal disconnecting set is an edge cut.

Theorem: (Whitney 1932)
If $G$ is a simple graph, then $\kappa(G) \leq \kappa'(G) \leq \delta(G)$

Proof:
Edges
incident
to
any
given
vertex
form
a
disconnecting
set,
so $\kappa'(G) \leq \delta(G)$

Note
that $\kappa(G) \leq n(G) - 1$ (duh)
Take
a
minimal
edge
cut $[S, V(G) - S]$. If
every
vertex
in $S$ is
adjacent
to
every
vertex
in
its
complement,
then
this
disconnecting
set
is
bigger
than
$n(G) - 1$

Else,
fix
$x \in S$ and
$y \in \overline{S}$
nonadjacent.
Let $T$ be
set
of
neighbors
of
$x$
in
$\overline{S}$
and
vertices
in
$S - \{x\}$
adjacent
to
something
in
$\overline{S}$
$T$
is
definitely
a
separating
set,
since
all
$x, y$-paths
pass
through
$T$

Pick
all
edges
from
$x$
to
$T \cap \overline{S}$
and
one
edge
for
each
point
in
$T \cap S$

This
is
a
subset
of $[S, \overline{S}]$, so
$\kappa'(G) = |[S, \overline{S}]| \geq |T|$

(lecture ended here)

Note:
If $\kappa(G) = \delta(G)$, then
necessarily $\kappa'(G) = \delta(G)$
This
includes
complete
graphs,
bicliques,
hypercubes,
and
Harary
graphs

There
is
a
rich
subject
exploring
relationships
between
these
topics.
Flexibility
is
an
interesting
question.
Theorem:
If $G$ is a 3-regular graph, then $\kappa(G) = \kappa'(G)$

Proof:
Take $S$ a minimum vertex cut and $H_1, H_2$ two components of $G - S$
Since $S$ is minimal, each $v \in S$ has at least one neighbor in $H_1$ and at least one in $H_2$
Cannot have 2 of each.
For each $v \in S$, delete the edge from $v$ to whichever of the sets $v$ has only one neighbor in.
If $v$ has exactly one neighbor in each set, (draw picture), then there's a $v_2 \in S$ adjacent to $v$ [a sort of ladder picture]. Break the two edges on the same side.
This breaks all paths from $H_1$ to $H_2$ and deletes exactly one edge for each $v \in S$, so $\kappa(G) = \kappa'(G)$

What if I have a graph where $\kappa'(G) < \delta(G)$? Then edge cuts are pretty small compared to vertex degrees, so we aren’t just isolating vertices. Can we express how big the components we’re cutting off are?

Proposition:
If $S \subseteq V(G)$, then $\left| [S, \overline{S}] \right| = \left| \sum_{v \in S} d(v) \right| - 2e(G[S])$

Proof:
Edges in $G[S]$ are counted twice in the sum. Subtract them out.

Corollary:
If $G$ is a simple graph and $\left| [S, \overline{S}] \right| < \delta(G)$ for some nonempty proper subset $S$ of $V(G)$, then $|S| > \delta(G)$

Proof:
We have $\delta(G) > \left| \sum_{v \in S} d(v) \right| - 2e(G[S])$
Use:
$\delta(G) > \sum_{v \in S} d(v) - 2e(G[S])$
$2e(G[S]) \leq |S| \cdot (|S| - 1)$
Resulting inequality requires $|S| > 1$, (otherwise $0 > 0$)

We may often find ourselves breaking graphs into many smaller pieces. Removing many edges may give large edge cuts containing smaller edge cuts.

Definition:
A bond is a minimal nonempty edge cut

Proposition:
If $G$ is connected, then an edge cut $F$ is a bond if and only if $G - F$ has exactly two components.

Proof:
If more than 2 components, pick one and just disconnect it.

If $F = [S, \overline{S}]$ is an edge cut with $G - F$ having exactly two components, take a strict subset $F' \subset F$
$G - F'$ contains both components of $G - F$, but must contain an edge between $S$ and $\overline{S}$
So it is connected.
We know how to break a graph into components. However, when thinking about robustness, we might like to break connected graphs into pieces such that each piece is "very connected" with more tenuous links existing between pieces.

**Definition:**
A block of a graph $G$ is a maximal connected subgraph of $G$ that has no cut-vertex. If $G$ itself is connected and has no cut-vertex, $G$ is a block.

(draw a picture)

**Question:**
Suppose $G$ is a tree. What are the blocks of $G$?

**Note:**
Blocks of a loopless graph consist of
- isolated vertices
- cut-edges
- maximal 2-connected subgraphs

**Note:**
Blocks in a graph form a decomposition of a graph. This can have really great properties, not unlike strong components of a digraph.

**Proposition:**
Two blocks in a graph have at most one vertex in common.

**Proof:**
Proof by contradiction, let $B_1, B_2$ have two vertices in common. There can be no cut-vertex between them (paths can go through either)

**Definition:**
The block-cutpoint graph of a graph $G$ is a bipartite graph $H$ in which one partite set consists of cut-vertices of $G$, and the other partite set has one vertex $b_i$ for each block $B_i$ of $G$.
Include $vb_i$ as an edge of $H$ iff $v \in B_i$

(draw a picture for a connected graph $G$)

**Question:**
What does this graph look like when $G$ is connected?

Finding blocks in a graph algorithmically may be done using depth first search. (It may be worth briefly talking about the difference between depth first search and breadth first search.)
When discovering a new vertex $v$ from an old vertex $x$, include $xv$.

**Lemma:**
If $T$ is a spanning tree of a connected graph $G$ grown by DFS from $u$, then every edge of $G$ not in $T$ consists of two vertices $v, w$ such that $v$ lies on the $u, w$-path in $T$.

**Proof:**
Let $vw \in E(G)$, with $v$ encountered before $w$.
Since $vw$ is an edge, we can't have finished with $v$ before $w$ is added to $T$.
Thus $w$ will appear in the subtree rooted at $v$, so the path from $u$ to $w$ passes through $v$.

**Algorithm: (Finding the Blocks of a graph)**

**Input:** Connected graph $G$

**Idea:** Build a DFS tree $T$, discard portions of $T$ as blocks are found. Maintain an "active" vertex.

Fix a root $x \in V(H)$, make $x$ ACTIVE, set $T = \{x\}$
Loop:
- Let $v$ denote the current ACTIVE vertex
  - If $v$ has an unexplored edge $vw$
    - If $w \notin V(T)$ add $vw$ to $T$, mark $vw$ explored, make $w$ ACTIVE
    - If $w \in V(T)$, then $w$ is ancestor of $v$, mark $vw$ explored
  - If $v$ has no more unexplored incident edges
    - If $v \neq x$
      - $w$ the parent of $x$. Make $w$ ACTIVE
        - If no vertex in the subtree $T'$ rooted at $v$ has an explored edge to an ancestor above $w$
          - $V(T') \cup \{w\}$ is the vertex set of a block
            - Record that info, delete $V(T')$ from $T$
    - If $v = x$
      - End program

Do an example of this algorithm, but don't prove that it works.
Intuitively, being "very connected" means that there should be a lot of different paths that go between any two points.

If a network is to be fault tolerant, it should be at least 2-connected. We'll explore this case first.

**Definition:**
Two $u, v$-paths are **internally disjoint** if they have no common internal vertices.

**Theorem:** (Whitney 1932)
If $G$ has at least three vertices, $G$ is 2-connected if and only if for each pair $u, v \in V(G)$ there exist internally disjoint $u, v$-paths in $G$.

**Proof:**

($) Deletion of any point cannot disconnect any pair of other points, so this is immediate.

($\Rightarrow$) Induction on $d(u, v)$

Base case - remove edge between $u$ and $v$, since $\kappa' \geq \kappa$, the resulting graph is still connected.

Let $k = d(u, v)$

Pick the shortest $u, v$-path, let $w$ be last point on it before $v$.

By induction hypothesis, two paths to $w$ from $u$. If one contains $v$, we're done, by looking at the formed cycle.

Otherwise, may assume neither contains $v$. Consider $G - w$, there's a $u, v$-path $R$.

If this avoids previous paths, done.

Otherwise, let $z \in R$ be the last point intersecting previous paths (draw picture).

May come up with internally disjoint paths.

Here's a lemma which is useful for building up bigger $k$-connected graphs from smaller ones.

**Lemma:** (Expansion Lemma)
If $G$ is $k$-connected and $G'$ is $G$ with an added vertex $y$ with at least $k$ neighbors, then $G'$ is $k$-connected.

**Proof:**
Let $S$ be a separating set. If $y \in S$, then $S - \{y\}$ must separate $G$.

If $y \notin S$, then either $N(y) \subseteq S$ or $G' - \{\text{component containing } y\}$ is disconnected, and $S - \{y\}$ separates $G$ again.

**Theorem:**
If $G$ has at least three vertices, the following conditions are equivalent

A) $G$ is 2-connected
A') $G$ is connected and has no cut-vertex

B) For all $x, y \in V(G)$, there are internally disjoint $x, y$-paths

C) For all $x, y \in V(G)$, there is a cycle through $x$ and $y$

D) $\delta(G) \geq 1$, and every pair of edges in $G$ lies on a common cycle. *Surely we could take $\delta \geq 2$*

**Proof:**
A' = A is a definition
A = B is the previous theorem
B = C is obvious
D => C

No edge is isolated, pick an edge incident on \( x \) and \( y \)

\((A,B,C) => D\)

\( G \) is connected, so \( \delta(G) \geq 1 \) certainly

Take edges \( uv \) and \( xy \). Use expansion lemma to add a vertex incident only on \( u, v \) and another incident only on \( x, y \)

Take a cycle between these two new vertices. (draw)

**Definition:**

In a graph \( G \), a *subdivision* of an edge \( uv \) is the replacement of \( uv \) with a path \( u, w, v \) between \( u, v \) through a new vertex \( w \)

**Lemma:**

If \( G \) is 2-connected, then \( G' \) obtained by subdividing an edge of \( G \) is 2-connected.

**Proof:**
Condition on whether the subdivided edge is present.

As it turns out, combining the expansion lemma and the subdivision lemma actually lets us build up all possible 2-connected graphs (ears are just subdivided degree 2 vertices)

**Definition:**

An *ear* of a graph \( G \) is a path in \( G \) that is contained in a cycle and is maximal, in the sense that all internal vertices have degree 2.

An *ear decomposition* of \( G \) is a decomposition \( P_0, ..., P_k \) such that \( P_0 \) is a cycle and \( P_i \) for \( i \geq 1 \) is an ear of \( P_0 \cup ... \cup P_i \)

(draw picture)

**Theorem:** (Whitney 1932)

A graph is 2-connected iff it has an ear decomposition. Moreover, every cycle in a 2-connected graph is the initial cycle in some ear decomposition.

**Proof:**

Graphs with ear decompositions are 2-connected by lemmas.

Let \( C \) be a cycle in 2-connected \( G \), set \( G_0 = C \), and suppose \( G_i \) is a subgraph of \( G \) obtained by adding \( i \) ears successively to \( G_0 \)

Suppose \( G_i \neq G \)

Take \( uv \) an edge in \( G - G_i \) and \( xy \) an edge in \( G_i \).

Form a cycle containing both, this cycle contains a path with endpoints the only intersections with \( G_i \). This is an ear.

\( \rightarrow \) Process must terminate with \( G_i = G \) eventually

(Lecture ended here)

(maybe skip the next sections up to and including \( x, y \)-cuts and just summarize them in words)

**Question:** What about edge connectivity? Can we characterize it in any simple ways?

**Definition:**

A *closed ear* in a graph \( G \) is a cycle \( C \) such that all vertices of \( C \) except one have degree 2 in \( G \).

A *closed ear decomposition* of a graph \( G \) is a decomposition \( P_0, ..., P_k \) such that \( P_0 \) is a cycle and \( P_i \) is an ear or a closed ear in \( P_0 \cup ... \cup P_k \)

**Theorem:**
A graph is 2-edge-connected iff it has a closed ear decomposition, and every cycle in a 2-edge-connected graph is the initial cycle in some closed ear decomposition.

Proof:
Cut edges cannot be in any cycles, so 2-edge-connected iff every edge is in a cycle. If $G$ has a closed ear decomposition, this is immediately true.

If $G$ is 2-edge-connected, let $P_0$ be a cycle in $G$.
Suppose $G_i \subset G$ has a closed ear decomposition $P_0, \ldots, P_t$, pick $uv$ not in $G_i$ with $u \in V(G_i)$.
It is contained in a cycle, which must eventually return to $G_i$, forming an ear or a closed ear.

Digraphs

Definition:
Given a digraph $D$:
A separating set or vertex cut is a set $S \subseteq V(D)$ such that $D - S$ is not strongly connected.
The connectivity $\kappa(D)$ and $k$-connectedness are defined in identical ways as the undirected case.

For $S, T \subseteq V(D)$, denote by $[S, T]$ the set of edges with tails in $S$ and heads in $T$.
An edge cut is the set $[S, \overline{S}]$ for some $\emptyset \neq S$.
$k$-edge-connectedness and edge-connectivity $\kappa'(D)$ are defined identically as the undirected case.

Note:
The digraph case is fairly convenient in that $[S, \overline{S}]$ may now be thought of precisely as "the set of edges leaving $S$". This leads to a nice fact:
$D$ is $k$-edge-connected if and only if for all nonempty proper vertex subsets $S$, there are at least $k$ edges in $D$ leaving $S$.

The following proposition will give us some convenient intuition about strong digraphs, relating them to 2-connected undirected digraphs.

Proposition:
Adding a (directed) ear to a strong digraph produces a strong digraph.

Proof:
Pretty straightforward, show that every set has an edge departing it.

Question:
(draw an undirected graph which is not 2-edge-connected)
If this is a road network and all of the roads were suddenly made one-way, would you be able to go from any point in this graph to any other point?

Theorem: (Robbins 1939)
A graph has a strong orientation if and only if it is 2-edge-connected.

Proof:
Obviously connectedness is necessary, and the absence of cut edges is necessary.
Take $G$ 2-edge-connected. Take a closed ear decomposition. Arrange the initial cycle cyclically, and then as each ear is added, make it a consistent direction. The orientation will remain strong.
This theorem can actually be generalized pretty substantially.

**Theorem:** (see Frank 1993)
A graph $G$ has a $k$-edge-connected orientation if and only if it is $2k$-edge-connected.

---

$k$-Connectedness

Can we come up with an easier equivalent condition for being $k$-connected?

We'll first formulate some 'local' properties which are easier to think about.

**Definition:**
Take $x, y \in V(G)$. A set $S \subseteq V(G) - \{x, y\}$ is an $x, y$-separator or an $x, y$-cut if $G - S$ has no $x, y$-path.

Let $\kappa(x, y)$ be the minimum size of an $x, y$-cut.

Let $\lambda(x, y)$ be the maximum size of a set of pairwise internally disjoint $x, y$-paths.

For $X, Y \subseteq V(G)$ an $X, Y$-path is a path with first vertex in $X$ and last vertex in $Y$.

**Note:**
An $x, y$-cut must contain an internal vertex of each $x, y$-path, so $\kappa(x, y) \geq \lambda(x, y)$

(this gives a duality relationship to these optimization problems)

(draw an example and compute some of these things)

**Theorem:** (Menger 1927) [Same guy as the sponge]
If $x, y$ are vertices of a graph $G$ and $xy \notin E(G)$, then the minimum size of an $x, y$-cut equals the maximum number of pairwise internally disjoint $x, y$-paths.

**Proof:**
We already have one direction of the equality. Need to show the other direction.

We work by induction on $n(G)$. If $n(G) = 2$, $xy \notin G$ so the graph is trivial.

Let $k = \kappa_G(x, y)$, want to find $k$ disjoint paths.

$N(x)$ and $N(y)$ are both $x, y$-cuts, so no minimum $x, y$-cut properly contains them.

**Case 1:**
$G$ has a minimum $x, y$-cut $S$ which is not $N(x)$ or $N(y)$

Combine $x, S$-paths and $S, y$-paths.

Let $V_1 =$ vertices on $x, S$-paths

$V_2 = $ vertices on $S, y$-paths

WTS $V_1 \cap V_2 = S$, certainly $S \subseteq V_1 \cap V_2$

Take $v \in V_1 \cap V_2 \setminus S$, there exists an $x, S$-path containing $v$ and a $y, S$-path containing $v$.

Traverse pieces of them to avoid $S$ with an $x, y$-path, this is impossible.

Similarly, any $v \in N(y) \setminus S$ is not in $V_1$ by same argument, and any $v \in N(x) \setminus S$ is not in $V_2$.

Take induced graph on $V_1$, add vertex $y'$ adjacent to all points in $S$ to get graph $H_1$.
Take induced graph on $V_2$, add vertex $x'$ adjacent to all points in $S$ to get graph $H_2$.

Both $H_1$ and $H_2$ are smaller than $G$ so there exist $k$ internally disjoint $x, y'$-paths in $H_1$ and $x', y'$-paths in $H_2$.

For each point in $S$, a single such path of each kind goes through them. Delete $x', y'$
and merge to get \( x, y \)-paths

**Case 2:**

Every minimum \( x, y \)-cut is \( N(x) \) or \( N(y) \)

If \( G \) has a vertex \( v \) which is not \( x, y \) nor in \( N(x) \) or \( N(y) \) then \( \kappa_{G-v}(x, y) = k \), so inductive hypothesis gives desired paths.

If \( G \) has a vertex \( v \in N(x) \cap N(y) \), then \( v \) is in every \( x, y \)-cut, so \( \kappa_{G-u}(x, y) = k - 1 \) and inductive hypothesis gives \( k - 1 \) internally disjoint paths. Include \( x, u, v \) as the last path.

Thus, may now assume \( N(x) \) and \( N(y) \) partition \( V(G) - \{x, y\} \)

Take \( G' \) a bigraph with bipartition \( N(x) \) and \( N(y) \) and edges \([N(x), N(y)]\)

All \( x, y \)-paths cross from \( N(x) \) to \( N(y) \), and vertex cuts break all paths, so \( x, y \)-cuts in \( G \) are vertex covers in \( G' \), so \( \beta(G') = k \)

By Koenig-Egervary Theorem, \( G' \) has matching of size \( k \)

Combining matched edges with edges to \( x, y \), we get desired paths.

This statement is inherently about \( k \)-connectivity. To get a similar statement about \( k \)-edge-connectivity, we translate our graph somewhat.

**Definition:** (This is discussed explicitly on homework)

The line graph of a graph \( G \), \( L(G) \) is the graph with \( V(L(G)) = E(G) \) and \( ef \in E(L(G)) \) if \( e, f \in E(G) \) are incident on a common vertex (or for digraphs, head of \( e \) is tail of \( f \))

**Notation:**

- \( \lambda'(x, y) \) is the maximum size of a set of pairwise-edge-disjoint \( x, y \)-paths
- \( \kappa'(x, y) \) the minimum number of edges whose deletion makes \( y \) unreachable from \( x \)

(Elias-Feinstein-Shannon 1956 and Ford-Fulkerson 1956)

\( \lambda'(x, y) = \kappa'(x, y) \) (does not matter if multigraph or if \( xy \in E(G) \))

**Theorem:**

If \( x, y \) are distinct vertices of a graph or digraph \( G \), then \( \lambda'(x, y) = \kappa'(x, y) \)

**Proof:**

Add new vertices \( s, t \) and edges \( sx, yt \) (draw)

Does not change \( \lambda'(x, y) \) or \( \kappa'(x, y) \)

Set of edges disconnects \( x, y \) in \( G \) iff corresponding vertices of \( L(G') \) form an \( sx, yt \)-cut

Edge disjoint \( x, y \)-paths in \( G \) iff internally disjoint \( sx, yt \)-paths in \( L(G') \)

\( x \neq y \), so \( sx, yt \) are not adjacent in \( L(G') \)

By Menger's Theorem

\[ \kappa'_G(x, y) = \kappa_{L(G')}(sx, yt) = \lambda_{L(G')}(sx, yt) = \lambda'_G(x, y) \]

(Lecture ended here)

Global version of \( k \)-connected statement is also often called Menger's theorem. For edges and for digraphs first appeared in Ford-Fulkerson 1956.

**Lemma:**

Deletion of an edge reduces connectivity by at most 1

**Proof:**

Every separating set of \( G \) separates \( G - xy \), so \( \kappa(G - xy) \leq \kappa(G) \)
If equality does not hold, then $G - xy$ has a separating set $S$ which does not separate $G$
$G - xy - S$ has some components, call two $X, Y$ with $x \in X$ and $y \in Y$
$xy$ is only edge connecting these components.
If $|X| \geq 2$, $S \cup \{x\}$ separates $G$, so $\kappa(G) \leq \kappa(G - xy) + 1$. Same if $|Y| \geq 2$
Otherwise $|S| = n(G) - 2$. Since $|S| < \kappa(G)$, $\kappa(G) = n(G) - 1$ [only happens if $G$ is complete]

**Theorem:**
Connectivity of $G$ is the max $k$ such that $\lambda(x, y) \geq k$ for all $x, y \in V(G)$
Edge-connectivity of $G$ is the max $k$ such that $\lambda'(x, y) \geq k$ for all $x, y \in V(G)$
Both statements are true for graphs and digraphs.

**Proof:**
$k'(G) = \min_{x,y \in V(G)} k'(x, y)$
So edge connectivity is immediate by previous theorem
For connectivity, we still have $\kappa(G) = \min_{x,y \in V(G)} \kappa(x, y)$
But we only know that $\lambda(x, y) = \kappa(x, y)$ if $xy \notin E(G)$
If $xy \in E(G), xy$ is an $x, y$-path, so deletion of $xy$ reduces $\lambda(x, y)$ by 1
By previous lemma and Menger's theorem

$\lambda_G(x, y) = 1 + \lambda_{G-xy}(x, y) = 1 + \kappa_{G-xy}(x, y) \geq 1 + \kappa(G - xy) \geq \kappa(G)$

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Questions similar to that in Menger’s Theorem come up in a variety of different contexts. An important example is the Fan Lemma. (Not the same Dirac)

Definition:
Given a vertex x and a set U of vertices an x, U-fan is a set of paths from x to U such that any two of them only share the vertex x in common

Theorem: (Fan Lemma, Dirac 1960)
A graph is k-connected iff it has at least $k + 1$ vertices and for all $x \in V(G)$ and U with $|U| \geq k$
it has an x, U-fan of size k

Proof:
To see necessary, add a new vertex adjacent to all of U then use Menger’s theorem.
To see sufficient, suppose G satisfies fan condition.
Pick $v \in V(G)$ and $U = V(G) - \{v\}$. By fan condition, $\delta(G) \geq k$ (each path hits a neighbor)
Take $w, z \in V(G)$ and $U = N(z)$. $|U| \geq k$, extend w, U-paths with edges to z. This gives k
w, z-paths.

We can generalize this fan lemma a LOT. A common one takes X, Y disjoint sets and integer-valued functions on X, Y each summing to k, and finds k pairwise internally disjoint X, Y-paths with the number ending at each point equal to the value of those functions.

A slightly less convoluted extension is below. [This may not be worth doing]

Theorem: (Dirac 1960)
If G is k-connected with $k \geq 2$ and S is a set of k-vertices in G, then G has a cycle including S in its vertex set.

Proof:
Induction on k. The $k = 2$ case is our characterization of 2-connectedness.
For larger $k > 2$, fix G,S
Take $x \in S, S - \{x\}$ all lies on a cycle C. If $n(C) = k - 1$ we must have an x, C-fan of size $k - 1$. Two paths in this fan going to adjacent vertices in C can be used to enlarge C

Now assume $n(C) \geq k$.
G has an $x, V(C)$-fan of size k

Claim:
There exist two paths in this fan that form a detour from C that includes x but keeps all of $S - \{x\}$ in C

Let $v_1, ..., v_{k-1}$ the points of $S - \{x\}$ in the order they appear in C, let V_i be the portion of $V(C)$ starting at v_i up to but not including v_{i+1}
$V_1, ..., V_{k-1}$ partition C into $k - 1$ sets, so by Pigeonhole two paths in the fan go to the same set. Take these as the detour.

Question:
Why is Menger’s theorem helpful? What do all of these clever little arguments actually help us with?

Idea:
If you want to understand some problem, try to view the objects you want to study as paths in some graph of digraph, by cleverly defining a graph
Then use Menger’s theorem to get disjoint paths, and translate these back into your desired context.

Example:
Given sets $A = A_1, ..., A_m$ with union X
A system of distinct representatives (SDR) is a set of distinct elements $x_1, ..., x_m$ such that $x_i \in A_i$

A sufficient and necessary condition is $|U_{i \in I} A_i| \geq |l|$ for all $I \subseteq [m]$
(Does this look familiar?)
This problem is just a rephrasing of Hall’s matching theorem, and is actually an equivalent formulation of Menger’s Theorem

Here’s a tougher variant.

Problem:
Let $A = A_1, ..., A_m$ and $B = B_1, ..., B_m$ be two families of sets.
A common system of distinct representatives (CSDR) is a set of m elements that is an SDR for both A and B.

Theorem: (Ford-Fulkerson 1958)
Families $A = A_1, ..., A_m$ and $B = B_1, ..., B_m$ have a CSDR if and only if
$$\bigcup_{i \in I} A_i \cap \bigcup_{j \in J} B_j \geq |I| + |J| - m$$
for each pair $I, J \subseteq [m]$

Proof:
Define a digraph G with vertices $a_1, ..., a_m$ and $b_1, ..., b_m$ and a vertex for each element in the sets, and two extra vertices s, t
Edges are
$$\{sa_i: A_i \in A\}, \{b_jt: B_j \in B\}$$
$$\{a_ix: x \in A_i \in A\}, \{xb_j: x \in B_j \in B\}$$
An s, t-path selects a member of the intersection of some \(A_i \) and \(B_j \) (one can only cross over at a common point.

Claim:

There exists a CSDR iff there is a set of \(m \) pairwise internally disjoint s, t-paths.

By Menger’s theorem, there is a CSDR iff there is no s, t-cut of size less than \(m \).

Take \(R \subseteq V(G) - \{s, t\} \) and let

\[
I = \{i \in [m]: a_i \notin R\}
\]
\[
J = \{j \in [m]: b_j \notin R\}
\]

Claim:

\(R \) is an s, t-cut iff

\[
\bigcup_{i \in I} A_i \cap \bigcup_{j \in J} B_j \subseteq R
\]

(all points which are both in a set \(A_i \) and in a set \(B_j \) which are not already covered by \(R \) are in \(R \)).

Thus,

\[
|R| \geq \left| \bigcup_{i \in I} A_i \cap \bigcup_{j \in J} B_j \right| + (m - |I|) + (m - |J|)
\]

This lower bound is always at least \(m \) (we can essentially choose \(I \) and \(J \) freely in varying \(R \)) iff the main condition holds [so that most terms on the right side cancel].
Imagine a situation where you have a network of pipes (or roads, or bus lines, or electrical lines, etc.)
where valves allow flow in one direction, each pipe having a specified capacity per unit time.
Put a vertex at each junction and model each pipe as an edge, weighted by capacity. Assume there’s no
buildup at junctions, for simplicity.
Given locations s, t in the network, one might be interested in asking how much flow one can get
between s and t

This is an incredibly broad category of problems, one can find more in Ford-Fulkerson 1962 or Ahuja-

Definition:

A network is a digraph with a nonnegative capacity $c(e)$ on each edge e and a distinguished
source vertex s and sink vertex t.

Vertices are also called nodes.

A flow f is a function assigning values to each edge e.

Given a flow, write $f^+(v)$ for the total flow on edges leaving v and $f^-(v)$ for the total flow on
edges entering v.

A flow is feasible if it satisfies the capacity constraints

\[0 \leq f(e) \leq c(e) \]

for each edge and the conservation constraints

\[f^+(v) = f^-(v) \]

for each node $v \notin \{s, t\}$

There are a lot of questions that can be asked about such things. We'll start by asking about max
flows.

Definition:

The value $\text{val}(f)$ of a flow f is the net flow $f^-(t) - f^+(t)$ into the sink.

A maximum flow is a feasible flow of maximum value.

(draw an example of a flow on a digraph - pg 176 of the book is a good one to talk through [it has an
augmenting path])

(explain why the zero flow is always feasible)

Definition:

When f is a feasible flow in a network N, an f-augmenting path is a source-to-sink path P in
the underlying graph G such that for each $e \in E(P)$

- if P follows e in the forward direction, $f(e) < c(e)$
- if P follows e in the backward direction, $f(e) > 0$

If we have such a path, let $\epsilon(e) = c(e) - f(e)$ when e is forward on P and let $\epsilon(e) = f(e)$
when e is backward on P.

The tolerance of P is $\min_{e \in E(P)} \epsilon(e)$

(explain why this allows increasing the flow using a drawing)

Lemma:

If P is an f-augmenting path with tolerance z, then changing flow by $+z$ on edges followed
forward by P and by $-z$ on edges followed backwards by P produces a feasible flow f' with

\[\text{val}(f') = \text{val}(f) + z \]
Proof:
By definition of tolerance, $0 \leq f'(e) \leq c(e)$ for all edges, satisfying capacity constraints.
For conservation constraints, need only check points on P as only they’ve changed - but always in a way that cancels out (draw the four cases of directions of P around a node)

Net flow into the sink t increases by z

This means that if we want to find better flows, finding augmenting paths allows us to "redirect fluid" down pipes to improve our situation, iterating until we reach a maximum

Question:
Is there a quick(-ish) way to check that we are at a maximum?

Definition:
A source/sink cut $[S, T]$ consists of the edges from a source set S to a sink set T where S, T
partition the set of nodes, with $s \in S$ and $t \in T$
The capacity of the cut $[S, T]$ written $cap(S, T)$ is the total of the capacity of the edges in $[S, T]$

(recall for digraphs $[S, T]$ are edges with tail in S and head in T)

Lemma:
If U is a set of nodes in a network, the net flow out of U is the sum of the net flows out of the nodes of U. In particular, if f is feasible and $[S, T]$ is a source/sink cut, then the net flow out of S and net flow into T equal $val(f)$

Proof:
We want to show
\[f^+(U) - f^-(U) = \sum_{v \in U} (f^+(v) - f^-(v)) \]
This formula is somewhat immediate (edges within U cancel on the right)

Interpret this in the case $U = S$ or $U = T$ for a source/sink cut

Corollary: (Weak duality)
If f is a feasible flow and $[S, T]$ is a source/sink cut, then $val(f) \leq cap(S, T)$

Proof:
By lemma,
\[val(f) = f^+(S) - f^-(S) \leq f^+(S) \]
Capacity constraints require $f^+(S) \leq cap(S, T)$

Note:
Given capacities of a network, the question of finding a source/sink cut with minimum capacity defines the minimum cut problem
Again, we have a duality result, and in fact we will ultimately have equality of solutions

Algorithm: (Ford-Fulkerson labeling algorithm)
Input: Feasible flow f in a network
Output: An f-augmenting path or a cut with capacity $val(f)$
Idea:
Find nodes reachable from s by paths with positive tolerance
Reaching t completes an f-augmenting path.
During search, $R =$ nodes labeled as "Reached" and $S \subseteq R$ the "Searched" nodes
Set \(R = \{ s \} \) and \(S = \emptyset \)

Loop:

- Choose \(v \in R - S \)
- For each exiting edge \(vw \) with \(f(vw) < c(vw) \) and \(w \not\in R \)
 - Add \(w \) to \(R \)
- For each entering edge \(uv \) with \(f(uv) > 0 \) and \(u \not\in R \)
 - Add \(u \) to \(R \)
- Label vertices in \(R \) as "reached", record \(v \) as the vertex reaching it
- Add \(v \) to \(S \) and mark it "searched"

If sink \(t \) has been reached (put in \(R \))
- Trace the path reaching \(t \) to report an \(f \)-augmenting path
- Terminate

If \(R = S \)
- Return the cut \([S, \overline{S}]\)
- Terminate

(draw a picture and run an example)

Theorem: (Max-flow Min-cut Theorem - Ford Fulkerson 1956)

In every network, the maximum value of a feasible flow equals the minimum capacity of a source/sink cut

Proof:

- Zero flow is always feasible, to take it as start point.
- Given a feasible flow, run Ford-Fulkerson algorithm.
- If algorithm gives augmenting path, we may use it to increase flow value, then repeat algorithm.
 - If capacities are rational, min tolerance is \(1/a \) with \(a \) the lcm of denominators, so value increases by at least \(1/a \) each time and is bounded.
- Eventually algorithm must return a cut with equal value
 - \([S, \overline{S}]\) is a source/sink cut since \(s \in S \) and \(t \in \overline{S} \)
 - Labeling algorithm included no nodes of \(\overline{S} \)
 - so no edge from \(S \) to \(\overline{S} \) has excess capacity
 - and no edge from \(\overline{S} \) to \(S \) has nonzero flow
 - Thus \(f^+(S) = \text{cap}(S, T) \) and \(f^-(S) = 0 \)
 - Thus \(\text{val}(f) = \text{cap}(S, T) \)

Question:

- Wait, what gives? This proof assumes capacities are rational! What happens if I want a pipe with capacity \(\pi \) or \(\sqrt{2} \)?

This algorithm actually can break in such examples! It might infinitely loop - here's an example where things will break (take \(x = \frac{\sqrt{5} - 1}{2} \))
Should probably upload this to the course website, it explains the infinite loop:
https://faculty.math.illinois.edu/~mlavrov/docs/412-spring-2018/infinite-loop.pdf

However, there is a way to modify the algorithm so that it will work for all real capacities
The idea is to find the shortest augmenting path (See Ahuja-Magnanti-Orlin 1993)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~
Especially for applications in pure mathematics, flows tend to have integer capacities and one ultimately wants solutions for which the flow on each edge is an integer.

**Corollary:** (Integrality Theorem)

If all capacities in a network are integers, then there is a maximum flow assigning integral flow to each edge
Furthermore, some maximum flow can be partitioned into flows of unit value along paths from source to sink

**Proof:**

The tolerance in each step of the algorithm is an integer, so it must output an integral flow

For this produced maximum flow:

- for each internal node, produce a matching of units of entering flow to units of exiting flow
This produces a collection of $s,t$-paths and some cycles on the graph.
- For each cycle, decrease flow on each edge in the cycle by 1 to remove the cycle without changing the value of the flow.

**Note:**

This theorem is really, really similar to Menger’s theorem

**Idea 1:** (From Max-Flow Min-Cut to Menger)

When $x$, $y$ are vertices in a digraph $D$, view $D$ as a network with source $x$ and sink $y$ and capacity 1 on all edges

Units of flow from $x$ to $y$ correspond to pairwise internally disjoint $x,y$-paths

A flow of value $k$ thus has exactly $k$ such paths

For any source/sink cut $[S,T]$, deleting these disconnects $x$ and $y$
All capacities are 1, so the size of this set is $\text{cap}(S,T)$

Thus

$$\lambda_0'(x,y) \geq \max \text{val}(f) = \min \text{cap}(S,T) \geq \kappa_0'(x,y)$$
But $\lambda' \leq \kappa'$ always, so equality.

**Idea 2:** (From Menger to Max-Flow Min-Cut)
Plan: Take an arbitrary network $N$ with rational capacities, turn it into a digraph to apply Menger's Theorem.

WLOG clear denominators to get integer capacities. For each edge, if the capacity is $j$ split the edge into $j$ directed edges with the same head and tail as the original edge. This gives a digraph $D$. By duality on the network, $\max \mathrm{val}(f) \leq \min \mathrm{cap}(S, T)$

Take $\lambda'(s, t)$ pairwise edge-disjoint $s, t$-paths in $D$, this corresponds to a flow of value $\lambda'(s, t)$ on $N$, so $\max \mathrm{val}(f) \geq \lambda'(s, t)$

Take $F$ a set of $\kappa'(s, t)$ edges disconnecting $t$ from $s$ in $D$
If $e \in F$, by minimality some $s, t$-path passes over $e$ but no other edge in $F$
$F$ must contain all "copies" of the edge $e$, otherwise we could just take a different one (contains all or none of the copies of each edge)

Thus $\kappa'(s, t)$ is the sum of capacities on a set of edges that disconnects $t$ from $s$
Let $S$ be vertices reachable from $s$ in $D - F$, this gives a source/sink cut with its complement.
$\mathrm{cap}\left( S, \overline{S} \right) = \kappa'(s, t)$
Thus $\min \mathrm{cap}(S, T) \leq \kappa'(s, t)$

These two problems are equivalent! (And in fact are also equivalent to the maximum matching problem!)
The min-cut max-flow algorithm is probably the most computationally convenient algorithm we've discussed, though.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(There's a section on supply and demand models which is pretty interesting - see what you have time for)
Definition:
A k-coloring of a graph G is a labeling $f : V(G) \to S$ where $|S| = k$
The labels are colors, the vertices of one color form a color class
A k-coloring is proper if adjacent vertices have different labels
A graph is k-colorable if it has a proper k-coloring
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable

Recall: (from the very beginning of the class, almost)
k-colorable and k-partite have the same meaning

Question:
How do I color a graph that has loops?

Definition:
A graph is k-chromatic if $\chi(G) = k$
A proper k-coloring of a k-chromatic graph is an optimal coloring
If $\chi(H) < \chi(G) = k$ for every proper subgraph H of G, then G is color-critical or k-critical

Question:
What do 1-critical and 2-critical graphs look like?

Note:
3-critical graphs are odd cycles (by the classification of bipartite graphs)

Definition:
The clique number of a graph G is $\omega(G)$ the maximum size of a set of pairwise adjacent vertices in G

Proposition:
For every graph G, $\chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$

Proof:
Points in clique need different colors.
Color classes form independent sets.

Note:
In general, $\chi(G)$ may be strictly larger than $\omega(G)$, a 5-cycle is a perfectly good example

Note:
For graphs G and H
$\chi(G + H) = \max\{\chi(G), \chi(H)\}$
$\chi(G \vee H) = \chi(G) + \chi(H)$

Definition:
The cartesian product of G and H is the graph $G \Box H$ with vertex set $V(G) \times V(H)$ with (u, v) adjacent to (u', v') iff either
$u = u'$ and $vv' \in E(H)$
$v = v'$ and $uu' \in E(G)$
Definition: The m by n grid is the product $P_m \square P_n$

(draw) (one can remember this box symbol by thinking about $P_2 \square P_2$

Proposition: (Vizing 1963, Aberth 1964)
\[\chi(G \square H) = \max\{\chi(G), \chi(H)\} \]

Proof:
Since G and H are both contained as subgraphs, one has $\chi(G \square H) \geq \chi(G)$ and $\chi(G \square H) \geq \chi(H)$ immediately.

Let $k = \max\{\chi(G), \chi(H)\}$
Let f be a proper $\chi(G)$-coloring of G and g a proper $\chi(H)$-coloring of H

Define a coloring h on $G \square H$ by
\[h(u, v) = g(u) + h(v) \mod k \]

Ideally, we’d like a good way to come up with bounds on the chromatic number of a graph
Naively, $\chi(G) \leq n(G)$, but we can do better

Algorithm: (Greedy Coloring)
The greedy coloring relative to a vertex ordering v_1, \ldots, v_n of $V(G)$ iterates through the vertices, assigning each the label of the lowest color not equal to the color already assigned to a neighbor

Proposition:
\[\chi(G) \leq \Delta(G) + 1 \]

Proof:
Each point has at most $\Delta(G)$ neighbors, at worst only those many colors will already be claimed.

We can improve greedy coloring a bit by picking a good order for vertices.

Proposition: (Welsh-Powell 1967)
If G has degree sequence $d_1 \geq \cdots \geq d_n$ then
\[\chi(G) \leq 1 + \max_i \min\{d_i, i - 1\} \]

Proof:
Order vertices in non-increasing order of degrees. Number of neighbors of v_i already colored is at most $\min\{d_i, i - 1\}$

Picking the right order is the name of the game - every graph has a vertex ordering where the greedy coloring will produce an optimal coloring.
There are some graphs where we can come up with better colorings than this greedy coloring strategy might have us do without being very lucky about the order we’ve chosen.

Example:
Computers stores variables in memory locations called registers in order to do arithmetic.
These are quickly accessible locations in memory, but there are relatively few of them. Ideally, we’d like to assign variables that are never used at the same time to the same register, because we’ll never need both at once.
For any variable, we could in principle record the first and last time we use it, calling the intervening interval active.
Make a graph whose vertices are the variables. Two vertices are adjacent if they are active at overlapping times.
Number of registers needed = chromatic number of the obtained graph

(draw a picture)

Definition:
An *interval representation* of a graph is a family of intervals assigned to the vertices such that the vertices are adjacent if and only if the corresponding intervals intersect.
A graph with such a representation is an *interval graph*

Proposition:
If G is an interval graph, then $\chi(G) = \omega(G)$

Proof:
Order vertices according to left endpoints of intervals, then greedy color.
Suppose x has label k
Then some $k - 1$ preceding points have intervals overlapping the start of the interval for x
These k vertices form a k-clique

Note:
If you computationally implement the greedy coloring algorithm on a "random" graph, it will probably use about twice the minimum needed # of colors.
It can be very very bad if you use it on trees.

Lemma:
If H is a k-critical graph, then $\delta(H) \geq k - 1$

Proof:
Let $x \in V(H)$
$H - x$ is $k - 1$-colorable
If $d_H(x) < k - 1$, then $N(x)$ does not use $k - 1$ many colors, so we can use one of these remaining on k

Theorem: (Szekeres-Wilf 1968)
If G is a graph, then $\chi(G) \leq 1 + \max_{H \subseteq G} \delta(H)$

Proof:
Let $k = \chi(G)$
If $H' \subseteq G$ is k-critical, then
$\chi(G) - 1 = \chi(H') - 1 \leq \delta(H') \leq \max_{(H \subseteq G)} \delta(H)$

We can relate properties of colorings to those of orientations of a graph.

Example:
Every bipartite graph has an orientation with all edges going from partite set 1 to partite set 2
Longest path length is 1
Any orientation of an odd cycle must have two adjacent edges with the same orientation
Longest path length at least 2

Theorem: (Gallai-Roy-Vitaver Theorem (Gallai 1968) (Roy 1967) (Vitaver 1962))
If \(D \) is an orientation of \(G \) with longest path length \(l(D) \), then
\[\chi(G) \leq 1 + l(D) \]
Moreover, there exists an orientation of \(G \) where this is an equality.

Proof:
Let \(D \) be an orientation, take \(D' \) a maximal subdigraph containing no cycle (can always take \(D' \) spanning)
Color \(V(G) \) by letting \(f(v) \) be \(1 + \) (length of longest path in \(D' \) ending at \(v \))

Let \(P \) a path in \(D' \) starting at \(u \). Any path in \(D' \) ending at \(u \) cannot contain any other points in \(P \) - this would form a cycle
Thus \(f \) strictly increases along \(P \)
\(f \) uses colors 1 through \(1 + l(D') \) on \(V(G) \)
For each edge \(uv \in E(G) \), either \(uv \) or \(vu \in E(D') \) or there is a path in one of those directions (maximality)
Thus \(f(u) \neq f(v) \)

Now, let \(f \) be an optimal coloring of \(G \), we want to construct an orientation.
Define an orientation \(D \) by \(uv \in E(D) \) iff \(f(u) < f(v) \) and \(uv \in E(G) \)
No path in this orientation can be longer than \#colors - 1

We had a bunch of bounds for colorability in the previous section. One of the simplest was \(\chi(G) \leq 1 + \Delta(G) \). We know this bound is an equality for complete graphs and odd cycles.

Theorem: (Brook 1941)
If \(G \) is connected and is not complete or an odd cycle, then \(\chi(G) \leq \Delta(G) \)

Proof:
Take \(G \) connected with \(k = \Delta(G) \)
We may take \(k \geq 3 \) (all smaller graphs are trivial or do not satisfy assumptions)

(Idea: Order the vertices in a clever way, then use greedy coloring)

Case 1: \(G \) is not \(k \)-regular
Take a vertex \(v_n \in V(G) \) with degree less than \(k \)
Grow a spanning tree of \(G \) from \(v_n \), assign indices in decreasing order as they are reached
Every vertex has a higher ordered neighbor, so has at most \(k - 1 \) lower-indexed neighbors (we know \(\Delta \))
Greedy color

Case 2: \(G \) is \(k \)-regular, with some cut vertex \(x \)
\(G - x \) has multiple components, let \(G' \) be one of them, with edges to \(x \) added back in
\(d_{G'}(x) < k \), so previous method gives proper \(k \)-coloring of \(G' \)
Do this for every component, permute colors if necessary so that they agree on the color for \(x \)

Case 3: \(G \) is \(k \)-regular and 2-connected
Suppose \(v_n \) has two neighbors \(v_1, v_2 \) such that they are not adjacent and \(G - \{v_1, v_2\} \) is connected
Index spanning tree of \(G - \{v_1, v_2\} \) so that indices increase along paths to \(v_n \), starting at index 3
We now have order \(v_1, v_2, ..., v_n \)
Each element in order has at most \(k - 1 \) lower-indexed neighbors, except last
But \(v_1, v_2 \) are assigned same color, so we get a \(k \)-coloring
Now we just need to argue that every 2-connected k-regular graph with $k \geq 3$ has such a choice of v_1, v_2, v_n

Take $x \in V(G)$

If $\kappa(G - x) \geq 2$, take $v_1 = x, v_2$ some vertex at distance 2 from x

(must exist otherwise everything connected to everything)

Take v_n a common neighbor

If $\kappa(G - x) = 1$, let $v_n = x$

$G - x$ can be divided into blocks, say a block is a leaf block if it only contains one cut-vertex of $G - x$ (equivalently if it is a leaf in the block-cutpoint graph, which is a tree)

x must have a neighbor in every such block, otherwise G would have a cut-vertex

There are at least two leaf blocks

Must be some neighbors v_1, v_2 of x in different blocks which are nonadjacent

(draw picture, this would probably help)

Since blocks have no cut-vertices $G - \{x, v_1, v_2\}$ is connected

Since $k \geq 3$, x has a third neighbor so $G - \{v_1, v_2\}$ is connected

There are a LOT of interesting variants of coloring problems that have uses in applications.

One could color edges, one could examine "generalized colorings", one can allow only certain colorings on each value ["list colorings"], one can discuss colorings of hypergraphs, and on and on
Definition:
We say that a graph G is perfect if $\chi(H) = \omega(H)$ for all induced subgraphs H of G.

Our goal here is to demonstrate a way to produce a graph with a chromatic number $\chi(G)$ much larger than $\omega(G)$.

Definition:
If G is simple, Mycielski’s construction produces a simple graph G' containing G.
Suppose $V(G) = \{v_1, \ldots, v_n\}$
Add vertices $U = \{u_1, \ldots, u_n\}$ and one additional vertex w
Add edges so that u_i is adjacent to all of $N_G(v_i)$ and let $N(w) = U$

Example:
Apply this construction to K_2 and then again to the resulting graph. Observe what seems to happen to the chromatic number.

Theorem: (Mycielski 1955)
From a k-chromatic triangle-free graph G, Mycielski’s construction produces a $k+1$-chromatic triangle-free graph G'.

Proof:
Let $V(G) = \{v_1, \ldots, v_n\}$ with copies u_1, \ldots, u_n and additional vertex w
U is an independent set of G'
Thus any triangle containing a point u_i must have both other points in $V(G)$
This necessarily gives us a a triangle entirely in G, which doesn’t exist

If f is a proper k-coloring of G, set $f(u_i) = f(v_i)$ and $f(w) = k + 1$ to get a proper $k + 1$-coloring of G'

Now, suppose by way of contradiction f is a proper k-coloring of G'
WLOG $f(w) = k$
Thus $f(U) \subseteq \{1, \ldots, k - 1\}$
Let A be the color class in $V(G)$ corresponding to color k

For each $v_i \in A$, modify $f(v_i)$ to be equal to $f(u_i)$
Only place this could cause problems is on edges of form $v_i v'$ with $v_i \in A$ and $v' \in V(G) - A$
For any such edge, $u_i v'$ is also an edge, so no color issues arise.

Thus, f gives rise to a proper $k - 1$-coloring of G, which does not exist by assumption.

Note:
If G is color-critical, Mycielski’s construction gives a new color-critical graph.

Note:
The graphs you get by repeatedly applying this construction are not, in general, the smallest possible examples. The number of vertices here grows exponentially. It’s enough for it to grow a bit faster than quadratically.
We now know that clique number and chromatic number can differ greatly. Is there any other way for us to infer information about the structure of a k-chromatic graph?

Proposition:
Every k-chromatic graph with n vertices has at least k choose 2 edges.
Equality holds for a complete graph plus isolated vertices.

Proof:
For every pair of colors i, j there must be an edge between vertices of color i and those of color j - otherwise we could amalgamate the colors.

Definition:
A complete multipartite graph is a simple graph G whose vertices can be partitioned into sets so that u adjacent to v if and only if u, v belong to different partite sets.
Equivalently, iff every component of \overline{G} is a complete graph.

When $k \geq 2$, write K_{n_1, n_2} as the complete k-partite graph with partite set sizes specified.

Definition:
The Turan graph $T_{n,r}$ is the complete r-partite graph with n vertices where partite sets differ in size by at most 1 (describe based on pigeonhole principle)

Lemma:
Among simple r-partite graphs with n vertices, the Turan graph is the unique graph with the most edges.

Proof:
Need only consider complete r-partite graphs. The idea is simply to move a vertex from the largest partite set (size i) to the smallest partite set (size j), gaining $i - 1$ edges but losing j.
This is positive iff all partite sets are within size 1 of one another.

Theorem: (Turan 1941)
Among n-vertex simple graphs with no $r + 1$-clique, $T_{n,r}$ has the maximum number of edges.

Proof:
Certainly there cannot be an $r + 1$-clique in $T_{n,r}$ by r-colorability.

Our lemma will give us the result if we can prove the maximum is achieved by an r-partite graph.
We claim:
if G has no $r + 1$-clique, then there is an r-partite graph H with the same vertex set as G and at least as many edges.
We work by induction on r.
$r = 1$, there aren't any edges.
Take $r > 1$.
Suppose G has no $(r + 1)$-clique and has n vertices and $x \in V(G)$ has degree $k = \Delta(G)$.
Take G' the induced subgraph on neighbors of x.
In G, x is adjacent to all points in G', so there can't be any r-cliques in G'.
By induction hypothesis, there exists $r - 1$-partite H' with vertex set $N(x)$ with $e(H') \geq e(G')$.
Let \(S = V(G) - N(x) \) and \(H \) be the graph formed from \(H' \) by adding all possible edges between \(N(x) \) and \(S \). \(S \) is an independent set, so \(H \) is \(r \)-partite.

Bounds on number of edges:

\[
e(H) = e(H') + k(n - k)
\]

\[
e(G) \leq e(G') + \sum_{v \in S} d_G(v)
\]

Corresponding terms in the first equation are larger (max degree is \(k \)).

Note:
The Turan graph is the unique extremal graph.

Characterizing color-critical graphs is another important task.

Remark:
If \(G \) has no isolated vertices, \(G \) is color-critical if and only if for every \(e \in E(G) \), \(\chi(G - e) < \chi(G) \).

Proposition:
Let \(G \) be \(k \)-critical.

For \(v \in V(G) \), there is a proper \(k \)-coloring in which the color on \(v \) appears nowhere else, and the other \(k - 1 \) colors all appear on \(N(v) \).

For \(e \in E(G) \), every proper \(k - 1 \)-coloring of \(G - e \) gives the same color to the two endpoints of \(e \).

Proof:
Remove the corresponding object and both proofs are trivial.

Recall that \(\delta(G) \geq k - 1 \) if \(G \) is \(k \)-critical. We can actually use Koenig-Egervary to get \(\kappa'(G) \geq k - 1 \) as well.

Lemma: (Dirac 1953)
Let \(G \) have \(\chi(G) > k \) and let \(X, Y \) be a partition of \(V(G) \).

If \(G[X] \) and \(G[Y] \) are \(k \)-colorable, then the edge cut \([X, Y]\) has at least \(k \) edges.

Proof: (Dirac-Sorensen-Toft 1974, Kainen)
Let \(X_1, \ldots, X_k \) and \(Y_1, \ldots, Y_k \) be the color classes.

If there’s no edge between \(X_i \) and \(Y_j \), then \(X_i \cup Y_j \) is an independent set in \(G \) (need to examine possible pairings).

Make a bipartite graph \(H \) with vertices \(X_1, \ldots, X_k \) and \(Y_1, \ldots, Y_k \) and edges connecting \(X_i \) and \(Y_j \) if there is no edge in \(G \) between them.

If \(|[X, Y]| < k \), \(H \) has at least \(k(k - 1) \) edges.

\(m \) vertices can cover at most \(km \) edges in a subgraph of \(K_{k,k} \), so \(E(H) \) cannot be covered by \(k - 1 \) vertices.

Apply Koenig-Egervary to get a perfect matching.

Assign a color to each independent set resulting from the matching.

Theorem: (Dirac 1953)
Every \(k \)-critical graph is \(k - 1 \)-connected.

Proof:
Let G be k-critical, $[X,Y]$ a minimum edge cut, both are $k-1$-colorable, so $||X,Y|| \geq k-1$

(lecture ended here)

There's a useful way to split up graphs that describes more of the relationship between chromatic number and size of vertex cuts.

Definition:

Let $S \subseteq V(G)$. An S-lobe of G is an induced subgraph of G whose vertex set consists of S and a component of $G - S$.

The union of all S-lobes of G is clearly G itself.

Proposition:

If G is k-critical, then G has no cutset consisting of pairwise adjacent vertices.

Notably, if $S = \{x, y\}$ is a cutset of G, then x is not adjacent to y and G has an S-lobe H with $\chi(H + xy) = k$.

Proof:

Take S a cutset with lobes $H_1, ..., H_t$.

Each H_i is $k-1$-colorable.

If all points of S are adjacent, for each H_i, the colors of all points in S must be distinct from one another.

By permuting colors, can make the colors on each $v_j \in V(S)$ agree for all i.

This gives a $k-1$-coloring of G.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A topic that will soon be important - forced subdivisions

**Definition:**

An $H$-subdivision is a graph obtained from $H$ by successive edge subdivisions. (Equivalently, a graph obtained from $H$ by replacing edges with pairwise internally-disjoint paths.

**Theorem:** (Dirac 1952a)

Every graph with chromatic number at least 4 contains a $K_4$ subdivision.

**Proof:**

Induct on $n(4)$

$n = 4$ means our graph is $K_4$.

$n > 4$

Let $H$ be a 4-critical subgraph of $G$.

$H$ cannot have a cut-vertex (by prev proposition).

If $\kappa(H) = 2$ and we have a cutset $S = \{x, y\}$, then these points are not adjacent.

There must be some $S$-lobe $H'$ such that $\chi(H' + xy) \geq 4$.

$n(H' + xy) = n(H') < n(H) \leq n(G)$, so apply IH.

We have a $K_4$ subdivision $F$ in $H' + xy$.

If $F$ doesn't contain $xy$, no problems.

If it does, replace $xy$ in $F$ with an $x,y$-path through a different $S$-lobe of $H$.

(One must exist because $x,y$ both must have a neighbor in all components of
May now assume $H$ is 3-connected.
Pick $x \in V(G)$, $H - x$ is 2-connected so there exists a cycle $C$ having length at least 3.
By Fan-Lemma, there exists an $x, C$-fan of size 3
This is a subdivision of $K_4$
There's another interesting topic about colorings which we haven't touched yet - counting them. Namely, how many proper $k$-colorings of a graph are there?

**Definition:**
Given $k \in \mathbb{N}$ and a graph $G$, the value $\chi(G; k)$ is the number of proper colorings $f : V(G) \rightarrow [k]$. The set of available colors is $[k] = \{1, \ldots, k\}$, but we do not insist that the $k$ colors all be used in a given coloring. Permuting the colors of a given coloring is regarded as producing a different coloring.

**Question:**
What is $\chi(K_n; k)$?
What is $\chi(K_n; k)$?

**Proposition:**
If $T$ is a tree with $n$ vertices, then $\chi(T; k) = k(k - 1)^{n-1}$

**Proof:**
Fix a vertex $v \in T$ as the root. It can be colored arbitrarily. Extending the proper coloring on from there in order of the tree, at each step we can assign $(k - 1)$ colors to each newly reached vertex. We are starting to notice a pattern here - we keep getting polynomials of degree $n$.

**Proposition:**
Let $x_{(r)} = x(x - 1) \cdots (x - r + 1)$. If $p_r(G)$ is the number of partitions (order does not matter!) of $V(G)$ into $r$ nonempty independent sets, then

$$\chi(G; k) = \sum_{r=1}^{n(G)} p_r(G) k_{(r)}$$

which is a polynomial in $k$ of degree $n(G)$

**Proof:**
If a given coloring uses exactly $r$ colors, it partitions $V(G)$ into $r$ nonempty independent sets. This can happen in $p_r(G)$ ways, by definition. If $k$ colors are available but I'm only using $r$ of them, there are $k_{(r)}$ ways to pick which colors are used and in which order.

**Corollary:**
$\chi(G; k)$ is monic.

**Proof:**
$p_n(G) = 1$

**Example:**
Consider $G = C_4$ (good luck with this computation...
Note: Unless the graph has no edges, \( p_1(G) = 0 \)

This is usually a horrifically complex way to compute the chromatic polynomial.

[remember that \( G \cdot e \) is the graph contracted along the edge \( e \) - also note that multiple edges don’t affect colorings in any way, so WLOG we may think only of simple graphs]

**Theorem:** (Chromatic Recurrence)

If \( G \) is a simple graph and \( e \in E(G) \), then \( \chi(G; k) = \chi(G - e; k) - \chi(G \cdot e; k) \)

**Proof:**

Every proper \( k \)-coloring of \( G \) is a proper \( k \)-coloring of \( G - e \)

Proper \( k \)-colorings of \( G - e \) are proper \( k \)-colorings of \( G \) if and only if they assign different colors to endpoints of \( e \)

If it assigns the same color to endpoints of \( e \), it will correspond to a proper \( k \)-coloring of \( G \cdot e \)

**Example:**

Compute \( \chi(G; k) \) for \( C_4 \) again, using previous propositions about trees and complete graphs.

This past proposition is a lot like the recursive one we had for computing the number of spanning trees. It is about as useful. Characterizing the chromatic polynomial more explicitly is an important (and fairly tricky!) topic.

**Theorem:** (Whitney 1933)

The chromatic polynomial \( \chi(G; k) \) of a simple graph has degree \( n(G) \), with integer coefficients alternating in sign and is of the form \( k^n - e(G)k^{n-1} + \cdots \)

**Proof:**

We induct on \( e(G) \). This follows from the empty graph case if \( e(G) = 0 \)

Suppose \( G \) has \( n \) vertices.

\( G - e \) and \( G \cdot e \) have fewer edges, so the inductive case applies to each

\[
\chi(G - e; k) - \chi(G \cdot e; k) = \chi(G; k)
\]

\[
k^n - (e(G) - 1)k^{n-1} + a_2 k^{n-2} - \cdots \\
- (k^{n-1} - b_1 k^{n-2} + b_2 k^{n-3} - \cdots ) \\
= k^n - e(G)k^{n-1} + \cdots
\]

If you want a technically complete formula, this one is the result of repeatedly using the recursive definition ad nauseum. It is totally impractical to actually use, since it’s a summation with exponentially many terms.

**Theorem:** (Whitney 1932)

Let \( \chi(G) \) denote the number of components of a graph \( G \)

Given a set \( S \subseteq E(G) \), let \( G(S) \) denote the spanning subgraph with edge set \( S \)

Then

\[
\chi(G; k) = \sum_{S \subseteq E(G)} (-1)^{|S|} k^{\chi(G(S))}
\]

I won’t even do the proof of this, because it’s essentially a useless formula.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~

I think I will skip the rest of this section, so as to spend more time on subsequent material.
Note:
During this whole semester, we've drawn graphs on the board or on paper. Doing so is necessarily (and ideally inconsequentially!) embedding our graphs in the plane. However, sometimes when we do so edges of our graphs cross each other. This makes the graph much more difficult to read, and also in some intuitive sense makes the drawing of the graph seem less natural.

Proposition:
$K_5$ and $K_{3,3}$ cannot be drawn without crossings.

(Definition: A chord of a path or cycle $C$ is an edge whose endpoints both lie in $C$)

Proof:
Draw either graph in the plane and let $C$ be a spanning cycle. If no edges cross, other edges are either inside or outside this cycle.
Say that two chords conflict if their endpoints on $C$ occur in alternating order - two such chords cannot both be internal or external.
Both $K_5$ and $K_{3,3}$ have 3 pairwise conflicting chords for a spanning cycle.

Ok, so this is a start point for the idea of drawing graphs in the plane - it isn't always possible. But to get at this more systematically, we need a clearer definition of what 'drawing' is.

Definition:
A curve is the image of a continuous function $f: [0,1] \rightarrow \mathbb{R}^2$
A polygonal curve is a curve consisting of finitely many line segments
A $u,v$-curve starts and ends at $u$ and $v$, respectively
A curve is closed if its first and last points coincide, and simple if it has no repeated points save possibly the first and last

A drawing of a graph $G$ is a function $f$ with domain $V(G) \cup E(G)$ which assigns each vertex to a point $f(v) \in \mathbb{R}^2$
and assigns each edge with endpoints $u,v$ to a polygonal $f(u), f(v)$-curve
The images of vertices must be distinct.
A point of $f(e) \cap f(e')$ that is not a common endpoint for distinct edges $e, e'$ is a crossing

(I won't prove this, but we can assume WLOG that three way crossings never happen, by slightly perturbing drawings)

These definitions allow us to specify graphs which can be drawn nicely.

Definition:
A graph is planar if it has a drawing without crossings
Such a drawing is a planar embedding of $G$
A plane graph is a particular planar embedding of a planar graph

Key to this theory will be thinking about the regions enclosed by drawings of graphs.

Definition:
An open set in the plane is a set $U \subseteq \mathbb{R}^2$ such that $\forall p \in U$, there is a small ball around $p$ contained wholly in $U$
A region is an open set $U$ containing a polygonal $u,v$-curve for every $u,v \in U$
The faces of a plane graph are the maximal regions of the plane that contain no point used in the embedding.

Note that every graph we draw has a bunch of internal faces and one enormous unbounded face

**Theorem:** (Jordan Curve Theorem - special case)
A simple closed polygonal curve $C$ consisting of finitely many segments partitions the plane into exactly two faces, each having $C$ as boundary.

**Proof:** (skip)

**Definition:**
Given a plane graph $G$, the dual graph $G^*$ is a plane graph whose vertices correspond to the faces of $G$
(Edges of $G^*$ connect faces of $G$ which are separated by an edge of $G$.)
In particular, for each edge $e$ of $G$ which borders on faces $U, V$, we obtain a dual edge $e^* \in E(G^*)$ connecting $U, V$

(draw)

**Example:**
Draw the dual graph of an embedding of the cube (this should be another Euler solid)

**Note:**
For any planar graph $(G^*)^*$ is (naturally) isomorphic to $G$
I won't prove this because I would have to be more careful about how I'm defining the embedding of the dual graph.

**Note:**
Dual graphs may have multiple edges
(draw)

**Note:**
Two embeddings of a planar graph may have nonisomorphic duals (example in the book)
This doesn't happen if the graph is 3-connected

**Definition:**
The length of a face in a plane graph $G$ is the total length of the closed walk(s) in $G$ bounding the face
(there's only one walk if the graph is connected)
Proposition:
If \( l(F_i) \) is the length of face \( F_i \) in a plane graph \( G \), then \( 2e(G) = \sum l(F_i) \)

Proof:
\( e(G) = e(G^*) \) and the length of a face is the degree in \( G^* \) of that face
Sum up degrees in dual graph.

Thinking about planar graphs and their duals presents a nice little variation of coloring problems. Coloring nonadjacent vertices of \( G^* \) amounts to coloring nonadjacent faces of \( G \). As such, we can talk about coloring maps in terms of colorings of duals of planar graphs! And coloring the duals of planar graphs is an identical problem to coloring planar graphs (since every such graph is the dual of its dual)

Theorem: (Four Color Theorem)
Every planar graph admits a proper 4-coloring.

This proof is a little bit tricky

We can think a bit more concretely about the duality relationship here, though
Many of the concepts which we’ve talked about in class have a really nice duality relationship for planar graphs (this does not extend to non-planar graphs!)

Theorem:
Edges in a plane graph \( G \) form a cycle if and only if the corresponding dual edges form a bond (minimal edge cut) in \( G^* \)

Proof:
Take \( D \subseteq E(G) \)
If \( D \) does not contain a cycle, it does not enclose a region
Then \( G^* - D^* \) is connected (there’s a way to get from any face to any other)
Thus \( D^* \) does not contain an edge cut
If \( D \) makes up the edges of a cycle, by Jordan curve theorem this encloses a region
Corresponding edge set \( D^* \) contains all dual edges between this region and outside (again, by JCT)
Thus \( D^* \) contains an edge cut
If \( D \) contains a cycle, then \( D^* \) contains an edge cut

Hence cycles in \( E(G) \) are minimal edge cuts in \( E(G^*) \)

We can say even more!

Theorem:
For a plane graph \( G \), the following are equivalent
\( G \) is bipartite
Every face of \( G \) has even length
The dual graph \( G^* \) is Eulerian

Proof:
B and C are equivalent by our standard characterization theorem for Eulerian graphs, just applied to \( G^* \)

A \( \rightarrow \) B
A face boundary consists of closed walks. Odd closed walks contain odd cycles, none in bipartite

B \( \rightarrow \) A
Let $C$ a cycle in $G$, it forms a simple closed curve enclosing a region $F$
Every face of $G$ is entirely in $F$ or entirely out of $F$
Sum face lengths for all faces inside $F$, get an even number

This sum counts each edge in $C$ once, and each edge entirely contained in $F$ twice
Hence all cycles have even length.

For planar graphs, we can establish a relation between the number of vertices, edges, and faces

**Theorem:** (Euler 1758)
If a connected plane graph $G$ has exactly $n$ vertices, $e$ edges, and $f$ faces, then

$$n - e + f = 2$$

**Proof:**
We induct on $n$.
$n = 1$, then $G$ consists only of loops. Each is a non-intersecting closed curve, and there’s an outer region plus 1 for each edge.
$n > 1$
$G$ is connected, so it has an edge which isn’t a loop. Select such an edge, $e$
Contract $G$ along $e$ to get a new plane graph with $n’, e’, f’$

$$n’ = n - 1$$
$$e’ = e - 1$$
$$f’ = f$$

Apply inductive hypothesis

**Note:**
If $G$ has $k$ components, $n - e + f = k + 1$ instead (this is effectively just a corollary of the main theorem)

**Theorem:**
If $G$ is a simple planar graph with at least three vertices, then $e(G) \leq 3n(G) - 6$
If $G$ is triangle-free, then $e(G) \leq 2n(G) - 4$

**Proof:**
WLOG by adding edges, may assume $G$ is connected
Since $G$ is simple, there are no loops and no multiple edges. With at least three vertices, so every face is bordered by at least 3 edges.

$$2e = \sum I(F_i) \geq 3f$$
Put into Euler’s formula

If triangle-free, all faces have length at least 4, do the same thing

**Corollary:**
$K_5$ and $K_{3,3}$ are nonplanar

**Proof:**
For $K_5$, $n = 5$, $e = 10$, violates previous
For $K_{3,3}$, no triangles and $n = 6$, $e = 9$

**Definition:**
A *maximal planar graph* is a simple planar graph that is not a spanning subgraph of another planar graph.
A triangulation is a simple plane graph where every face boundary is a 3-cycle

Proposition:
For a simple $n$-vertex plane graph $G$, TFAE
- $G$ has $3n - 6$ edges
- $G$ is a triangulation
- $G$ is a maximal plane graph

Proof:
First two are equivalent by noting that $G$ is a triangulation iff $l(F) = 3$ for all faces, so $2e = 3f$, thus equality

Second two are equivalent by noting that we can add an edge to split up a face iff the face is not bounded by a triangle (any way to split it is a chord of the cycle)
Motivating Question: Which graphs are and are not planar?

Proposition: If $G$ has a subgraph that is a subdivision of $K_5$ or $K_{3,3}$, then $G$ is nonplanar.

Proof: Every subgraph of a planar subgraph is planar, so if $G$ has any nonplanar subsets it is not planar. WLOG may take $G$ a subdivision of $K_5$ or $K_{3,3}$. If $G$ was planar, we could contract its edges to obtain a planar embedding of $K_5$ or $K_{3,3}$.

Theorem: (Kuratowski 1930) A graph is planar if and only if it does not contain a subdivision of $K_5$ or $K_{3,3}$. This proof is a bit longer, so we’ll break the proof up into lemmas in and of itself.

Definition: A Kuratowski subgraph of $G$ is a subgraph of $G$ that is a subdivision of $K_5$ or $K_{3,3}$. A minimal nonplanar graph is a nonplanar graph such that every proper subgraph is planar.

Goal 1: Show that a smallest possible nonplanar graph with no Kuratowski subgraph is 3-connected.

Lemma: If $F$ is the edge set of the face of a planar embedding of $G$, then $G$ has an embedding with $F$ the edge set of the unbounded face.

Proof: Embed on the sphere instead, then rotate desired face.

Lemma: Every minimal nonplanar graph is 2-connected.

Proof: Let $G$ be a minimal nonplanar graph. If $G$ disconnected, embed one component inside one face of the rest (contradiction). If $G$ has a cut vertex $v$, let $G_1, \ldots, G_k$ be $\{v\}$-lobes of $G$.

- Each is planar.
- Each can be embedded with $v$ on the outside face.
- Squeeze embeddings of each into sectors of the plane centered on $v$ to embed whole graph (contradiction).

Lemma: Let $S = \{x, y\}$ be a separating 2-set of $G$. If $G$ is nonplanar, adding $xy$ some $S$-lobe of $G$ yields a nonplanar graph.

Proof:
Let $G_1, \ldots, G_k$ be $S$-lobes of $G$, let $H_i = G_i \cup xy$
If all $H_i$ are planar, can embed all with $xy$ on outside face
Then, starting with $H_1$, may embed $H_i$ inside a single face with boundary containing $xy$
Then, delete $xy$ if $G$ doesn’t contain it.

**Lemma:**
If $G$ is a graph with fewest edges among all nonplanar graphs without Kuratowski subgraphs, then $G$ is 3-connected

**Proof:**
$G$ must be a minimal nonplanar graph, so $G$ is 2-connected. Let $S = \{x, y\}$ a separating set
Union of $xy$ with some $S$-lobe $H$ is nonplanar.
By minimality, $H \cup xy$ must have a Kuratowski subgraph $F$.
All of $F$ is in $G$, except possibly $xy$
Take an $x, y$-path through some other $S$-lobe
We obtain a Kuratowski subgraph of $G$
Hence $G$ is 3-connected

**Goal 2:** Show that every 3-connected graph with no Kuratowski subgraph is planar.

Our strategy is going to be inductive, but we need a bit of groundwork to establish the technique we’re going to use to reduce our graphs in size. The operation will be a contraction of a well chosen edge.

**Fact:** (don’t bother to prove this one, or leave it as an exercise)
Every 3-connected graph $G$ with at least 5 vertices has an edge $e$ such that $G \cdot e$ is 3-connected

We need to argue that this operation doesn’t create any Kuratowski subgraphs.

**Lemma:**
If $G$ has no Kuratowski subgraph, then neither does $G \cdot e$

Useful term for this proof:
A *branch vertex* of a subdivision $H'$ of $H$ is a vertex of degree at least 3 in $H'$
(they don’t correspond to the interior of created paths in the subdivision)

**Proof:**
We wish to show that if $G \cdot e$ has a Kuratowski subgraph, then so does $G$

Let $e = xy$ and let $z \in G \cdot e$ be the contracted vertex.
If Kuratowski subgraph $H$ doesn’t contain $z$, we’re done.
If $z \in V(H)$ but isn’t a branch vertex:
we get a Kuratowski subgraph of $G$ by taking $H$ and replacing $z$ with $x$ or $y$ or $e$

If $z \in V(H)$ is a branch vertex but at most one edge incident on $z$ in $H$ is incident to $x$ in $G$:
Expand $z$ into $xy$

If $z \in V(H)$ is a branch vertex with exactly 4 edges in $H$ incident on $z$, 2 of which are incident on $x$ in $G$
$H$ is a subdivision of $K_5$ (only way to get 4 incident)
Let $u_1, u_2$ be the next branch vertices in $H$ reached by following the paths from the edges incident on $x$
Let $v_1, v_2$ be similarly defined for $y$
There are only 5 branch vertices, so these are all of them. (draw)
Draw corresponding subgraph with $z$ replaced by $xy$, delete $u_1v_1$-path and $u_2v_2$-path
This is a $K_{3,3}$ subdivision

We're almost ready. We'll actually prove something better in the process.

**Definition:**

A *convex embedding* of a graph is a planar embedding in which each face is a convex region.

**Theorem:** (Tutte 1960)

If $G$ is a 3-connected graph with no subdivision of $K_5$ or $K_{3,3}$, then $G$ has a convex embedding in the plane with no three vertices on a line.

**Proof:** (Thomassen 1980)

- **Induction on $n(G)$**
  - $n = 4$, the only possible graph is $K_4$, which has a convex embedding. (a triangle with a point in the middle)

  $n(G) \geq 5$
  - There is an edge $e$ such that $G \cdot e$ is 3-connected, contracting it gives a vertex $z$
  - $H = G \cdot e$ has no Kuratowski subgraph, so $H$ has a convex embedding with no three vertices on a line by induction.

  - If one deletes all edges incident on $z$ (but not $z$) in this embedding, some face contains $z$ (might be unbounded face)
  - $H - z$ is 2-connected, so boundary of this face is a cycle $C$, which contains all neighbors of $z$
  - each is a neighbor of $x$ or $y$ in the original graph [replace $z$ by $xy$]

  - In cyclic order in $C$
    - Let $x_1, ..., x_k$ be neighbors of $x$

  - If all neighbors of $y$ lie between $x_i$ and $x_{i+1}$ (inclusive), we're done [draw picture with $y$ placed in the face]

  - If this doesn't happen, two possibilities:
    1) $y$ has three neighbors $u, v, w$ which are all neighbors of $x$
    2) $y$ has neighbors $u, v$ such that $x_i, u, x_{i+1}, v$ are in cyclic order on $C$

  - Case 1 - $C$ along with edges from $x, y$ to $u, v, w$ forms a $K_5$ subdivision
  - Case 2 - $C$ along with paths $uyv, x_i xx_{i+1}, xy$ forms a $K_{3,3}$ subdivision
    (draw both of these)

  - We're done.
Suppose the Markov matrix is symmetric. Can I say anything more about my Markov chain?
<table>
<thead>
<tr>
<th>Mathematical Content (this category counts twice in score)</th>
<th>1. Good mathematical content, mostly relevant to graph theory, mostly explained in some depth.</th>
<th>2. Good mathematical content, mostly relevant to graph theory, mostly explained in some depth.</th>
<th>3. Some mathematical content, but either not related to graph theory or not explained in much detail or only shallowly explained.</th>
<th>4. Some mathematical content, but very shallow and vague discussions, with little touching upon ideas from graph theory.</th>
<th>Some mathematical content, but very shallow and vague discussions, with little touching upon ideas from graph theory.</th>
<th>5. No or completely irrelevant questions asked of peers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarity of Explanation (this category counts twice in score)</td>
<td>Presentation stands on its own two feet; effective explanation of ideas.</td>
<td>Presentation stands on its own two feet; effective explanation of ideas.</td>
<td>Presentation relies on some unclear or unexplained background, but mostly stands on its own.</td>
<td>Presentation relies on some unclear or unexplained background, but mostly stands on its own.</td>
<td>Presentation relies on some unclear or unexplained background, but mostly stands on its own.</td>
<td>Presentation is muddled, with even background knowledge being insufficient to understand material.</td>
</tr>
<tr>
<td>Prerequisite to Questions</td>
<td>Responding to questions with insight, demonstrates understanding.</td>
<td>Responding to questions with insight, demonstrates understanding.</td>
<td>Responding to questions with some understanding.</td>
<td>Responding to questions with some understanding.</td>
<td>Responding to questions with some understanding.</td>
<td>Student actively confused by questions, little thought seems to have gone into the topic aside from the narrow confines of the talk.</td>
</tr>
<tr>
<td>In-depth/Questions of Others</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
<td>No or completely irrelevant questions asked of peers.</td>
</tr>
</tbody>
</table>

William Hollywood: Questions to ask:
1. Your algorithm finds the shortest path among those with the fewest number of transfers. Suppose I wanted to alter a balance between minimizing travelled distance and minimizing number of transfers, is there any way to take these structures you’ve defined and use them to handle this optimization? (b) What happens if this graph represents a network as a resistor. Is there a way for us to use this paradigm to talk about how efficient the network is as a whole?

<table>
<thead>
<tr>
<th>1 point</th>
<th>4 points</th>
<th>5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation fits all slides.</td>
<td>Too long, cut off.</td>
<td>Too short.</td>
</tr>
<tr>
<td>Quality of Presentation</td>
<td>Engaging, well spoken, clear (demonstrated through audience participation).</td>
<td>Mostly familiar with material, not engaging with audience.</td>
</tr>
<tr>
<td>Use of Slides/Chalkboard</td>
<td>Use of visual aids, but limited communication of what they convey to the audience.</td>
<td>Visual aids used, but not adequately explained.</td>
</tr>
<tr>
<td>Mathematical Content (this category counts twice in score)</td>
<td>Good mathematical content, relevant to graph theory, mostly explained in some depth.</td>
<td>Some mathematical content, but either not related to graph theory or not explained in much detail or only shallowly explained.</td>
</tr>
<tr>
<td>Clarity of Explanation (this category counts twice in score)</td>
<td>Presentation stands on its own two feet; effective explanation of ideas.</td>
<td>Presentation relies on some unclear or unexplained background, but mostly stands on its own.</td>
</tr>
<tr>
<td>Prerequisite to Questions</td>
<td>Responding to questions with insight, demonstrates understanding.</td>
<td>Responding to questions with some understanding.</td>
</tr>
<tr>
<td>In-depth/Questions of Others</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
</tr>
</tbody>
</table>

Matthew Benjamin:Questions to ask:
1. Suppose I have a game in which it is possible for a move to take me back to an earlier state of the game (the game tree is no longer a tree). Can I modify this algorithm to still work in such a setting?
2. Suppose I have a game in which it is possible for a move to take me back to an earlier state of the game (the game tree is no longer a tree). Can I modify this algorithm to still work in such a setting?
3. How can I guarantee that alpha-beta pruning will provide a speed-up over minimax? (If I evaluate “bad strategies” in the game tree first, alpha-beta pruning won’t help much.)

<table>
<thead>
<tr>
<th>1 point</th>
<th>4 points</th>
<th>5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation fits all slides.</td>
<td>Too long, cut off.</td>
<td>Too short.</td>
</tr>
<tr>
<td>Quality of Presentation</td>
<td>Engaging, well spoken, clear (demonstrated through audience participation).</td>
<td>Mostly familiar with material, not engaging with audience.</td>
</tr>
<tr>
<td>Use of Slides/Chalkboard</td>
<td>Use of visual aids, but limited communication of what they convey to the audience.</td>
<td>Visual aids used, but not adequately explained.</td>
</tr>
<tr>
<td>Mathematical Content (this category counts twice in score)</td>
<td>Good mathematical content, relevant to graph theory, mostly explained in some depth.</td>
<td>Some mathematical content, but either not related to graph theory or not explained in much detail or only shallowly explained.</td>
</tr>
<tr>
<td>Clarity of Explanation (this category counts twice in score)</td>
<td>Presentation stands on its own two feet; effective explanation of ideas.</td>
<td>Presentation relies on some unclear or unexplained background, but mostly stands on its own.</td>
</tr>
<tr>
<td>Prerequisite to Questions</td>
<td>Responding to questions with insight, demonstrates understanding.</td>
<td>Responding to questions with some understanding.</td>
</tr>
<tr>
<td>In-depth/Questions of Others</td>
<td>Student asked at least one relevant question of peers.</td>
<td>Student asked at least one relevant question of peers.</td>
</tr>
</tbody>
</table>
2. Can you talk us through the Held-Karp algorithm applied to a complete graph on four vertices with diagonals having large weights?

Many of these algorithms seem to require careful tuning of parameters for effective performance. Before running such a compute resource intensive algorithm, how can we be sure we have chosen these parameters?

3. Suppose you consider a complete graph on 4 vertices with the diagonals having large weights. Can you talk us through the Held-Karp algorithm applied to a complete graph on four vertices with diagonals having large weights?

4. Considering the Held-Karp algorithm applied to a complete graph on four vertices with diagonals having large weights. Many of these algorithms seem to require careful tuning of parameters for effective performance. Before running such a compute resource intensive algorithm, how can we be sure we have chosen these parameters? 

5. Are there any improvements that can be made to the Christofides algorithm to get better than a 3/2 approximation?

Some algorithms seem to require careful tuning of parameters for effective performance. Before running such a compute resource intensive algorithm, how can we be sure we have chosen these parameters?