Math 248: Graph Theory

Midterm Thursday, March 28th, 2024

NAME (please print legibly): ______ Your University ID Number: _____

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 14 pages.
- No calculators, phones, electronic devices, or books are allowed during the exam.
- You may bring a double-sided letter-sized page of notes.
- Show all work and justify all answers unless otherwise instructed.
- Read the instructions for each problem carefully.
- There are 6 problems. You have to do 5 problems out of 6. Clearly state which of the 6 you are choosing to do. I will only grade those 5.

PLEASE COPY THE HONOR PLEDGE AND SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE:_____

1. (15 points)

For each of the following statements, determine if it is true or false. Justify your answer with an example or an argument.

(a) Two graphs G and H are isomorphic iff their adjacency matrices are identical.

(b) For any integer $n \ge 2$, there exists a simple graph with radius n and diameter n + 2.

(c) Every Eulerian graph has a cut-edge.

 C_5

False

(a) Given a connected graph of n vertices, what is the minimal number of edges it can have? Justify.

f = f components 7 - e(G)Add an edge one at a time, each edge can either reduce components by 1 or (ease thin the same. We should a components. Connected \Rightarrow 1 component \Rightarrow $e(G) \ge n-1$ A tree realized this.

(b) Given a graph with 50 vertices and degree sum 90, find the minimal number of components it must have, and find a graph that achieves the minimum. Prove your answer.

By previous
$$\#$$
 components $7 n - e(G) = 50 - \frac{90}{2} = 5$
degree sum
Mealized by $P_{ub} = 4K_1$

Midterm, Math 248

(c) Given a graph with 50 vertices and degree sum 90, find the maximum number of components it must have, and find a graph that achieves the maximum. No proof necessary.

Claim: Given hosp graphs G, H. let r be the evaluat # st
$$r(r-1) \ge e(G)+e(W)$$

Then $r < n(G)+n(W)$.
 $e(r) \le n(r)(n(r-1)-r) \implies e(n)+e(W) \le n(G)(n(G)-r)_{+} n(W)b(W)-r)$
 $< \frac{h(G)+n(W)}{2} \implies e(n)+e(W) \le n(G)(n(G)-r)_{+} n(W)b(W)-r)$
 $< \frac{h(G)+n(W)}{2} \implies e(n)+e(W) \le n(G)(n(G)-r)_{+} n(W)b(W)-r)$
(It follows from $a(a-r)+b(b-r) < (a+b)(a+b-r)$ if $a_1b>0$.)
 $(a) a^2+b^2-(a+b) < (a+b)^2-(a+b)$
Two implies $A + (n(G)+n(W)-r)K_1$ has at least two longements and
in general more longements than $G + W_1$ where $n(A) = r$.
Then by induction one (an argue that $A + (n-r)K_1$ maximizes the
 $# of component. For $n = 50$, $e = 4s$ Choose $A = K_r$ $r = 10$.
Which gives $K_0 + (50-10)K_1$ which has 41 components$

-> Since I forgat to additu word simple. You may also to 50 components by adding 45 loops.

(a) Show that an acyclic graph is a disjoint union of trees.

Let $G = A_1 + 2 + \cdots + A_n$ where A_i are the components of G. Each component A_i : has $n(A_i) - 1$ edges \Rightarrow is a true.

(b) d is a sequence of length 100 of the form $(50, 50, \dots, 49, 49, 49, 49)$. That is, there are 96 entries of degree 50, and 4 entries of degree 49. Does there exist a graph with this degree sequence? If it does, find it, if not, prove that it does not exist.

You we	ed use	Havel-	Hahini d	sor this	. But	- notice	that	ib Ch	e halling a	
49 - regul	lax gr	aph on	100 vesti	us pai	ring up	s 96	of them	and	adding edger	۲.
Tahe	K 50	+ K50	which is	5 49 reg	ulax.	Poùr UP	96 rf	them	and odd an	Λ
edge to	çive	96 Jeshia	us of degree	250 a	nd 4	of degr	re 49.			

1. On the vertex set $\{1, \ldots, n\}$, describe all possible Prüfer codes of tree with exactly two leaves. Use this to count the total number of trees with exactly two leaves on n vertices.

If the tree has exactly two leaves, all other votices much have degree 2. Noneover, the leaves much be attached to different vertices. There are a choices for the smallest leaf to attach to. There are an forthe next. Now we have a true on an-2 vertices with exactly 2 leaves, since removing the 2 leaves reduces the degree of the vertices they are attached to by 1.

Arquing inductively
$$n -1 n-2$$

and so the # of Prifex codes is $n(n-1) - \frac{3}{2}$

You can also argue this by saying if you have a path on \$1,..., n3 corresponding to the permutation 6=(6,1,..., 6n). The only automorphism is (6n,..., 6,) (reversal).

- 2. Let G be a simple connected graph. Prove that $v \in V(G)$ is a cut-vertex iff no spanning tree of G has v as a leaf.
- Suppose $\exists a$ the with v as a leaf. Then $T \cdot v$ is connected. It has $n(G) \cdot 2$ edges and thus its a spanning there for $G \cdot v \Rightarrow G - v$ is connected \exists vis not a cut vedex. (We have proved the contrapositive $\delta f \Rightarrow$)
- ⇐ Suppose vis not a cut veltex. Then G-U is connected. Take any spanning thee T' of G-U. Attach u to any veltex of T'. T'+U is a spanning tree of G, and u is a leaf by construction. (Again proved the contrapositive)

Most of you could see how to do this. It was an exercise in proof writing.

(a) Using the matrix-tree theorem, count the number of trees on 4 vertices by computing a determinant

This is equivalent to counting the spanning trees of Ky.

(b) Prove Cayley's formula (for general n) using the matrix-tree theorem.

Suppose G is a simple graph with no isolated vertices, and let X and Y be a partition of V(G). Define J be the bipartite subgraph of G with partite sets X and Y, where J contains all edges of G that have one endpoint in each partite set.

(a) Suppose $d_J(v) = \frac{1}{2}d_G(v)$ for all $v \in V(J)$, where $d_J(v)$ and $d_G(v)$ denote degrees of the vertex v in the graphs J and G respectively. Show that there is a bipartite subgraph of G with more that e(J) edges. *Hint: Do this first for the graph* C_4 . Let the vertices appear in order as 1, 2, 3, 4. Let the partition be $X = \{1, 2\}$ and $Y = \{3, 4\}$. Flip one of the edges to achieve a bipartite subgraph with more than e(J) = 2 edges.

(b) Show that for every simple graph with no isolated vertices, there is a bipartite subgraph H with e(H) > e(G)/2. Recall that in class, we used a swapping method to show there is a bipartite graph with $e(H) \ge e(G)/2$. This problem seeks to improve that method using the observation in part A.

Apply the procedure in Prob 13.19 until we arrive at a bipathle graph
st
$$d_{\mu}(0) \neq \frac{d_{0}(u)}{2}$$
 $\# u \in V(G)$.
(Find u st $d_{\mu}(u) < \frac{d_{0}(u)}{2}$ (u) $(u$

=) $e(H) \ge e(G)$ $d_{d}(0) \ge d_{d}(0)$ $d_{d}(0) \ge d_{d}(0)$