Math 248: Graph Theory

Midterm
Thursday, March 28th, 2024

NAME (please print legibly):
Your University ID Number:

e You have 75 minutes to work on this exam.

e You are responsible for checking that this exam has all 14 pages.

e No calculators, phones, electronic devices, or books are allowed during the exam.

e You may bring a double-sided letter-sized page of notes.

e Show all work and justify all answers unless otherwise instructed.

e Read the instructions for each problem carefully.

e There are 6 problems. You have to do 5 problems out of 6. Clearly state
which of the 6 you are choosing to do. I will only grade those 5.

PLEASE COPY THE HONOR PLEDGE AND SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will

be my own.

YOUR SIGNATURE:
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1. (15 points)
For each of the following statements, determine if it is true or false. Justify your answer

with an example or an argument.

(a) Two graphs G and H are isomorphic iff their adjacency matrices are identical.
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(b) For any integer n > 2, there exists a simple graph with radius n and diameter n + 2.
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(¢) Every Eulerian graph has a cut-edge.
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2. (15 points)

(a) Given a connected graph of n vertices, what is the minimal number of edges it can have?

Justify.
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(b) Given a graph with 50 vertices and degree sum 90, find the minimal number of compo-

nents it must have, and find a graph that achieves the minimum. Prove your answer.
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(¢) Given a/\gr;x;)_}jvith 50 vertices and degree sum 90, find the maximum number of com-

ponents it must have, and find a graph that achieves the maximum. No proof necessary.
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3. (15 points)
(a) Show that an acyclic graph is a disjoint union of trees.
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(b) d is a sequence of length 100 of the form (50,50, --- ,49,49,49,49). That is, there are
96 entries of degree 50, and 4 entries of degree 49. Does there exist a graph with this

degree sequence? If it does, find it, if not, prove that it does not exist.
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4. (15 points)

1. On the vertex set {1,...,n}, describe all possible Priifer codes of tree with exactly
two leaves. Use this to count the total number of trees with exactly two leaves on n
vertices.
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2. Let G be a simple connected graph. Prove that v € V(G) is a cut-vertex iff no spanning
tree of GG has v as a leaf.
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5. (15 points)

(a) Using the matrix-tree theorem, count the number of trees on 4 vertices by computing a
determinant
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(b) Prove Cayley’s formula (for general n) using the matrix-tree theorem.
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6. (15 points)

Suppose G is a simple graph with no isolated vertices, and let X and Y be a partition of
V(G). Define J be the bipartite subgraph of G with partite sets X and Y, where J contains
all edges of G that have one endpoint in each partite set.

(a) Suppose d;(v) = 3d(v) for all v € V(J), where d;(v) and dg(v) denote degrees of the
vertex v in the graphs J and G respectively. Show that there is a bipartite subgraph
of G with more that e(J) edges. Hint: Do this first for the graph Cy. Let the vertices
appear in order as 1,2,3,4. Let the partition be X = {1,2} and Y = {3,4}. Flip one of
the edges to achieve a bipartite subgraph with more than e(J) = 2 edges.
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(b) Show that for every simple graph with no isolated vertices, there is a bipartite subgraph
H with e(H) > e(G)/2. Recall that in class, we used a swapping method to show there
is a bipartite graph with e(H) > e(G)/2. This problem seeks to improve that method

using the observation in part A.
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