Math 248: Graph Theory

Midterm
Thursday, March 28th, 2024

NAME (please print legibly): \qquad
Your University ID Number: \qquad

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 14 pages.
- No calculators, phones, electronic devices, or books are allowed during the exam.
- You may bring a double-sided letter-sized page of notes.
- Show all work and justify all answers unless otherwise instructed.
- Read the instructions for each problem carefully.
- There are 6 problems. You have to do 5 problems out of 6 . Clearly state which of the 6 you are choosing to do. I will only grade those 5 .

PLEASE COPY THE HONOR PLEDGE AND SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

1. (15 points)

For each of the following statements, determine if it is true or false. Justify your answer with an example or an argument.
(a) Two graphs G and H are isomorphic iff their adjacency matrices are identical.

$$
\begin{aligned}
& f:\{1,2,3\} \rightarrow\{1,3,2\} \text { dovious } \\
& f:\{12,23\} \longrightarrow\{13,32\} \text { bijechu. }
\end{aligned}
$$

$\begin{aligned} & 1 \\ & 2\end{aligned}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \neq\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$

false

(b) For any integer $n \geq 2$, there exists a simple graph with radius n and diameter $n+2$.

$$
\text { lertainly } \operatorname{diam}(a) \leqslant 2 \operatorname{rad}(G) . \quad n+2 \leqslant 2 n \quad \Rightarrow n \geqslant 2 \text { is necersary. }
$$

diam $=n+2$
True.
(c) Every Eulerian graph has a cut-edge.

False

2. (15 points)

(a) Given a connected graph of n vertices, what is the minimal number of edges it can have? Justify.

$$
\text { H of components } \geqslant n-e(a)
$$

Add an edge ane at a time, earn edge can either reduce coupponenbs by I or leave thin the same. We short n components.

$$
\text { Connected } \Rightarrow 1 \text { component } \Rightarrow e(G) \geqslant n-1
$$

A re realises this
(b) Given a graph with 50 vertices and degree sum 90 , find the minimal number of components it must have, and find a graph that achieves the minimum. Prove your answer.

$$
\begin{array}{ll}
\text { By previous } \quad \# \text { componerls } \geqslant n-e(a)=50-\frac{90}{2}=5 \\
\text { Realized by } & P_{46}
\end{array}
$$

$\frac{\text { Midterm, Math } 248 \uparrow^{\text {simple }} \text { Thursday, March 28th, } 2024 \quad \text { Page } 4 \text { of } 14}{\text { (c) Given } a_{\Lambda} \text { graph with } 50 \text { vertices and degree sum 90, find the maximum number of com- }}$ ponents it must have, and find a graph that achieves the maximum. No proof necessary.

Claim: Given two simple graphs G, H. Let s be the smallest $\#$ st $\frac{r(r-1)}{2} \geqslant e(G)+e(H)$ Then $r<n(G)+n(H)$.

$$
\begin{aligned}
& e(\cdot) \leqslant \frac{n(\cdot)(n(\cdot)-1)}{2} \Rightarrow e(a)+e(H) \leqslant \frac{n(G)(n(G)-1)}{2}+\frac{n(H)(n(H)-1)}{2} \\
& <\frac{(n(a)+n(H))(n(a)+n(H)-1)}{2}
\end{aligned}
$$

(If follows from $a(a-1)+b(b-1)<(a+b)(a+b-1)$ if $a, b>0$.)

$$
\Leftrightarrow \quad a^{2}+b^{2}-(a+b)<(a+b)^{2}-(a+b)
$$

This implies $A+(n(a)+n(H)-r) K_{\text {, }}$ has at lent two components and ingereral more componculs than $a+H$, where $n(A)=5$.

Then by induction one can argue that $A+(n-r) k_{1}$ maximizes the \# of component. For $n=50, e=45$ choose $A=K_{r} r=10$ 。 which gives $K_{10}+(50-10) K_{1}$ which has 4_{1} component
\rightarrow Since I forgot to and the word simple. Youmay also do 50 component by adding 45 loops.

3. (15 points)

(a) Show that an acyclic graph is a disjoint union of trees.

$$
\begin{aligned}
& \text { Let } G=A_{1}+2+\ldots A_{n} \text { where } A_{i} \text { are the components of } G \text {. } \\
& \text { Each corrected } \\
& \text { coup } \quad A_{i} \text { has } n\left(A_{i}\right)-1 \text { edges } \Rightarrow \text { its a tree. }
\end{aligned}
$$

(b) d is a sequence of length 100 of the form $(50,50, \cdots, 49,49,49,49)$. That is, there are 96 entries of degree 50, and 4 entries of degree 49. Does there exist a graph with this degree sequence? If it does, find it, if not, prove that it does not exist.

You could use Havel-Hahimi for this. But notice that its line Rating a 49 -regular graph on 100 vestius pairing up 96 of them and adding edges. Take $K_{50}+K_{50}$ which is 49 regular. Pair op 96 of them and add an edge to give 96 vertus of degree 50 and 4 of degree 49.

4. (15 points)

1. On the vertex set $\{1, \ldots, n\}$, describe all possible Prüfer codes of tree with exactly two leaves. Use this to count the total number of trees with exactly two leaves on n vertices.

If then tree has exactly two leaves, all other vertus must have degree 2. Moreover, the leaves mount be attached do different vertices. There are n choices for the smallest la al to attach to. There are $n-1$ forth next. Now we have a tue on $n-2$ vertices with excutly 2 leaves, since removing the 2 leaves reduces the degree of the vertices they are a ttalched to by 1.

and so the $\#$ of Prier codes is $n(n-1) \cdots 3=\frac{n!}{2}$
You can also argue this hy saying if you have a path on $\{1, \ldots, i n\}$ corresponding to the permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. The only automorphion is $\left(\sigma_{n}, \ldots, \sigma_{1}\right)$ (reversal).
2. Let G be a simple connected graph. Prove that $v \in V(G)$ is a cut-vertex iff no spanning tree of G has v as a leaf.
$\Rightarrow \quad$ Suppose \exists a tree with v as a leaf. Then T - v is connecked. Id has $n(a)-2$ edges and thews its a spanning tree for $G-v \Rightarrow G-v$ is connected $\Rightarrow v$ is not a cut vertex. (We have proved the contrapositive of \Rightarrow)
\& Suppose wis not a cut vethex. Then $G-v$ is connected. Take any spanning tree T^{\prime} of $G-v$. Attach o to any vertex of T^{\prime}. $T^{\prime}+v$ is a spanning tree of G, and G is a leaf by construction. (Again proved the contrapositive)

Most of you could ru how to do this. It was an exercise in proof writing.

5. (15 points)

(a) Using the matrix-tree theorem, count the number of trees on 4 vertices by computing a determinant
This is equivalent to courting the spanning trees of K_{4}.

$$
\begin{aligned}
\left.D-A=\left\lvert\, \begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right.\right] & C_{11}
\end{aligned}=\left|\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right|=\left|\begin{array}{ccc}
4 & -4 & 0 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right|=\left|\begin{array}{ccc}
4 & -4 & 0 \\
0 & 4 & -4 \\
-1 & -1 & 3
\end{array}\right|
$$

(b) Prove Cayley's formula (for general n) using the matrix-tree theorem.

6. (15 points)

Suppose G is a simple graph with no isolated vertices, and let X and Y be a partition of $V(G)$. Define J be the bipartite subgraph of G with partite sets X and Y, where J contains all edges of G that have one endpoint in each partite set.
(a) Suppose $d_{J}(v)=\frac{1}{2} d_{G}(v)$ for all $v \in V(J)$, where $d_{J}(v)$ and $d_{G}(v)$ denote degrees of the vertex v in the graphs J and G respectively. Show that there is a bipartite subgraph of G with more that $e(J)$ edges. Hint: Do this first for the graph C_{4}. Let the vertices appear in order as 1, 2,3,4. Let the partition be $X=\{1,2\}$ and $Y=\{3,4\}$. Flip one of the edges to achieve a bipartite subgraph with more than $e(J)=2$ edges.

$$
e(J)=4
$$

Pick $a \in X, b \in Y$ st $a b$ is an edge Move a to Y and b to X. Call lis graph J'
J lares $|N(a) \cap Y \backslash b|$ edges and gains

$$
|N(a) \cap x| \text { edges. }
$$

$$
\Rightarrow e\left(J^{\prime}\right)=e(J)-\left(\frac{d_{J}(a)}{2}-1\right)+\frac{d_{j}(a)}{2}
$$

$$
=e(J)+1
$$

All the other edges not involving a and b are unaffected.
(b) Show that for every simple graph with no isolated vertices, there is a bipartite subgraph H with $e(H)>e(G) / 2$. Recall that in class, we used a swapping method to show there is a bipartite graph with $e(H) \geq e(G) / 2$. This problem seeks to improve that method using the observation in part A.
Apply the procedure in Prob 1.3 .19 untilwe arrive at a bipartite graph 58

$$
d_{H}(v) \geqslant \frac{d_{G}(v)}{2} \quad \forall v \in V(G) .
$$

(Find v st $d_{H}(v)<\frac{d_{G}(u)}{2}$

$$
\Leftrightarrow \quad d_{H}(v)<d_{G}(v)-d_{H}(v) \text {. }
$$

if $v \in X$, move it to $Y_{\text {, w }}$ we lore $d_{H}(v)$ edges and gain $d_{G}(v)-d_{A}(v)$ which inst at least one. Since the total \# of edges is bounded, this procedure must stop.)

$$
\begin{aligned}
& \Rightarrow \quad \sum d_{H}(v) \geqslant \sum \frac{d_{G}(v)}{2} \\
& \Rightarrow \quad e(H) \geqslant e \frac{e(G)}{2}
\end{aligned}
$$

$$
\text { if } \exists \quad d_{\forall}(v)>\frac{d_{G}(v)}{2}
$$

then we're done since

$$
e(H)>\frac{e(G)}{2}
$$

If not $d_{B}(v)=\frac{d_{G}(v)}{2} \quad \forall v$. Applying part a finishes the proof.

