
MATH 240H: Homework 9: Quotient Constructions.
Due on gradescope, 11:59PM on Saturday, April 6

1. Let X = [0, 2] × [0, 1] be given the subspace topology from the standard
topology of R2. Intuitively this is a strip of paper. In class we considered
the equivalence relation of gluing the left and right edges with a twist given
by (0, t) ∼ (2, 1− t) for all 0 ≤ t ≤ 1. (In general we will not bother listing
equivalences of the form x ∼ x when describing an equivalence relation and
just list the ”nontrivial” equivalences in the relation.)The resulting quotient
space X/∼ is the Möbius Band.
(a) Let L = {(x, 1

2
)|0 ≤ x ≤ 2} which is a line segment in X. What is the

homeomorphism type of the quotient L/∼ as a subspace of X/∼. (No proof
needed in this problem, just answer the questions ”intuitively” and list a
standard space that L/∼ is homeomorphic to).
(b) Make a model of the Mobius band X/∼ from paper and cut it along the
curve L/∼. In class we showed abstractly using identification diagrams that
the result is a single cylinder. Describe briefly what happens when you ac-
tually do the experiment - the results are of course correct but the resulting
cylinder will be embedded in R3 in a nontrivial way.
(c) Further cut the cylinder obtained in the experiment in (b) along its mid-
dle ”circle”. We have seen abstractly that when you cut a cylinder this way
you will get two pieces each homeomorphic to a cylinder. Describe briefly
what actually happens when you conduct the experiment.

2. Let RP n = (Rn+1 − {0̂})/∼ be the real projective space of Rn+1 i.e., the
space of lines through the origin in Rn+1. Here the equivalence relation ∼ is
given by declaring x̂ to be equivalent to ŷ if they lie on the same line through
the origin, i.e., if there exists λ ∈ R − {0} such that λx̂ = ŷ. As usual this
quotient set is given the quotient topology it inherits from being a quotient
of Rn+1 − {0̂}.
(a) Let Sn ⊆ Rn+1 − 0̂ be the sphere of radius 1 with its subspace topology.
Show that the equivalence relation ∼ restricts to an equivalence relation on
Sn where two unit vectors û and v̂ are equivalent if and only if û = ±v̂.
(The points −û and û are said to be antipodal, thus the equivalence relation
inherited on the sphere is the one where antipodal points are equivalent.)
(b) Let i : Sn → Rn+1 − {0} be the inclusion map i(x) = x for x ∈ Sn. Let
p : Rn+1 − {0̂} → RP n be the quotient map in the original description of
RP n. Let q : Sn → Sn/∼ be the quotient map for the equivalence relation in
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(a). Explain why f = p ◦ i : Sn → RP n is continuous and why it induces a
continuous function f̄ : Sn/∼ → RP n using theorems about inducing func-
tions on quotient spaces.
(c) Show that the function f̄ : Sn/∼ → RP n is a bijection. (Hint: For an
equivalence class [x̂] ∈ RP n show that [x̂] = [û] where û is a vector of length
1. )
(The continuous bijection f̄ : Sn/∼ → RP n can be shown to be a homeomor-
phism using techniques we’ll learn in a couple of weeks. Thus RP n, the space
of lines thru the origin of Rn+1 can also be viewed as the space created by
identifying antipodal points on the n-sphere Sn. Thus you have now verified
that we have two equivalent quotient space descriptions of the space RP n.)

3. (a) LetH be the upper hemisphere of Sn ⊆ Rn+1, i.e., H = {(x1, . . . , xn+1) ∈
Sn|xn+1 ≥ 0}. Show that H is a closed subspace of Sn.
(b) Let E be the equator of Sn ⊆ Rn+1, i.e., E = {(x1, . . . , xn, 0) ∈ Sn} is
the subset of vectors of the sphere whose last coordinate is zero. Explain
why E is a closed subspace of H and why E is homeomorphic to Sn−1.
(c) Let ∼ be the equivalence relation on Sn where û ∼ −û as in question
2. Show that this equivalence relation restricts to an equivalence relation
on the upper hemisphere H were the only nontrivial equivalences are on the
equatorial sphere where antipodal points are identified.
(d) Let j : H → Sn be the inclusion map. Let q : Sn → Sn/∼ and
π : H → H/∼ be quotient maps. Explain why g = q ◦ j is continuous and
why it induces a continuous map ḡ : H/∼ → Sn/∼ given by ḡ([x]) = [j(x)]
where [y] denotes the equivalence class of y.
(e) Show that the map ḡ in (d) is a continuous bijection.
( It can be shown that ḡ is actually a homeomorphism. Thus RP n can be
made by starting with H and identifying antipodal points on the equatorial
sphere. Thus now we have a third quotient space description of RP n.)

4. Using the results from problems 2 and 3, it can be shown that a way to
construct the projective space RP 2 is to take the upper hemisphere H of the
2-sphere S2 and identify antipodal points on the equatorial circle. H in turn
can be shown to be homeomorphic to a unit closed disk in the plane. Thus
a model for RP 2 can be obtained by taking the unit closed disk in the plane
and identifying antipodal points on its boundary circle. In this problem you
will analyze RP 2 ”intuitively” using a model very close to this one.
(a) Let X = [0, 1] × [0, 1] be given the subspace topology from the stan-
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dard topology on the plane. Let ∼ be an equivalence relation on X whose
nontrivial equivalences are given by (0, t) ∼ (1, 1 − t) for 0 ≤ t ≤ 1 and
(x, 0) ∼ (1− x, 1) for 0 ≤ x ≤ 1. In other words the left edge is glued to the
right edge with a twist and the top edge is glued to the bottom edge with a
twist. Draw a careful picture of the identifications described on X.
(The resulting quotient space can be shown to be homeomorphic to RP 2.
In fact the unit closed disk is homeomorphic to the unit square X in such
a way that the antipodal identifications on the boundary circle become the
identifications described here.)
(b) In your identification model of RP 2 drawn in (a), make a dotted straight
line joining (0, 1) and (1, 1

2
) and another dotted straight line joining (0, 1

2
)

and (1, 0). The union L of these two straight lines is a subspace of X. What
is the homeomorphism type of L/∼ as a subspace of X/∼ = RP 2? (No proof
needed - just an intuitive answer.)
(c) Cut RP 2 up along the ”dotted curve” in (b). You should get three
”pieces” though two of them glue together so you only will have two real
pieces. Explain informally (using pictures) why one of these pieces is home-
omorphic to a Möbius band and the other is homeomorphic to a closed disk
in the plane.
(Note: You have now shown that RP 2, the space of lines through the origin
in R3 can be obtained by gluing a disk to a Möbius band along their (com-
mon) circle edge.)

5. Let D = {(x, y) ∈ R2|x2 + y2 ≤ 1} be the unit closed disk of the plane
with its standard subspace topology. Consider the equivalence relation on D
where all points on the boundary circle are equivalent, but each point in the
interior is only equivalent to itself. What standard simple space is the quo-
tient space D/∼ homeomorphic to? (No proof needed just do it intuitively
as if you were gluing points physically.)

6. (No proofs needed in this question.)
Starting with the space X = [0, 2]× [0, 1] draw identifications for an equiva-
lence relation on it so that the resulting quotient space is homeomorphic to:
(a) a cylinder.
(b) a Möbius band.
(c) a torus.
(d) a Klein bottle.
(e) the real projective plane RP 2.
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(f) the 2-sphere S2.

7. [Informal ”Cut and Paste” question - answer accordingly]
Let X be a 12-gon in the plane (the boundary as well as the ”inside”) with
the usual Euclidean subspace topology. Going around the boundary counter-
clockwise, label the 12 line segments a, b, a−1, b−1, c, d, c−1, d−1, e, f, e−1, f−1.
We will orient the line segments a, b, c, d, e, f with an arrow pointing along
the segment, counterclockwise along the boundary while we orient the line
segments a−1, b−1, c−1, d−1, e−1, f−1 with an arrow pointing along the seg-
ment, clockwise along the boundary.

(a) Draw a picture of X as described.

(b) Now let Y be the quotient space obtained by identifying the boundary
line segments labelled x with their inverse x−1 labelled segment according to
the assigned arrows for all x ∈ {a, b, c, d, e, f}. On the ”inside” of the 12-gon
no identifications are made. What this means is if you paremetrize the line
segments as functions of time 0 ≤ t ≤ then you sweep them out according
to the arrows you made in (a) moving with the arrow as time increases. You
then identify similar labeled lines by identifying points corresponding to the
same time t. Show that all 12 corners of the n-gon become the same point
from in the final qoutient space.

(c) Draw two dotted ”lines” across the interior of the 12-gon. One joining
the end-corners located at the two ends of the e− f − e−1− f−1 sequence of
boundary edges, and another joining the end-corners located at the two ends
of the a− b− a−1 − b−1 sequence of corners. Explain why these two ”lines”
are homeomorphic to two circles in the quotient space that meet at a point.

(d) Cut the space along the two dotted circles in (c) to obtain 3 pieces. Ex-
plain informally why two of the pieces are homeomorphic to a torus with
a hole drilled out (this means you take a ”small” chart on the torus and
remove an open set corresponding to an open Euclidean disk in that chart -
recall the torus is a 2-manifold). Explain informally why the third piece is
homeomorphic to a torus with two holes drilled out such where the boundary
circles of the holes touch at one point.

(e) Explain informally why the quotient space is homemorphic to the surface
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of genus 3. (for a picture see Wikipedia entry for ”Genus (mathematics)”).

8. Using ideas from problem 7, find an equivalence relation on the edges of
an octagon (8-gon) such that the resulting quotient space is homeomorphic
to the surface of a pretzel (Surface of genus 2). No proofs necessary just care-
fully draw an octagon and indicate how you are gluing its boundary edges.

9. Consider the quotient map p : Rn+1 − {0} → RP n described earlier in
this homework set. Let us denote the equivalence class of the nonzero vector
(x1, . . . , xn+1) ∈ Rn+1 − {0} by [x1, . . . , xn+1] ∈ RP n.
(a) Let Ui = {(x1, x2, . . . , xn+1) ∈ Rn+1|xi 6= 0} for i = 1, . . . , n + 1. Show
that these Ui are p-saturated open sets that cover Rn+1 − {0}, i.e. whose
union is all of Rn+1−{0}. Then explain why p(Ui), i = 1, . . . , n+ 1 are open
sets in RP n that cover RP n.
(b) Show that the function λi : Ui → Rn given by λi(x1, x2, . . . , xn+1) =
(x1

xi
, x2

xi
, . . . , xi−1

xi
, xi+1

xi
. . . , xn+1

xi
) is a well-defined, continuous map that is con-

stant on the level sets of p. This implies that λi induce well-defined contin-
uous maps λ̄i : p(Ui)→ Rn where λ̄i([x1, . . . , xn+1]) = λi(x1, . . . , xn+1).
(c) Show that the map ψi : Rn → p(Ui) given by

ψi(y1, . . . , yn) = p(y1, . . . , yi−1, 1, yi, . . . , yn) = [y1, . . . , yi−1, 1, yi, . . . , yn]

is well defined and continuous. Show that ψi is the inverse of λi.
(d) Explain why RP n is a locally n-Euclidean space.
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