MATH 240H: Homework 8: Manifolds and Topological Groups. Due at 11:59PM on Saturday, March 30 on Gradescope.com

In this homework set, subsets of \mathbb{R}^{n} are always equipped with the subspace topology coming from the standard topology of \mathbb{R}^{n}. All products will be given the product topology.

1. (a) Show that if X and Y are 2nd countable topological spaces then $X \times Y$ is also 2 nd countable.
(b) Show that if X is a n-dimensional topological manifold and Y is a m dimensional topological manifold then $X \times Y$ is a $(m+n)$-dimensional topological manifold.
2. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be given by $F(x, y, z, w)=x^{3}+y^{3}+z^{3}$.
(a) Find the set of critical points and regular points of F (Note these are both subsets of \mathbb{R}^{4}.)
(b) Find the set of critical values and regular values of F (Note these are both subsets of \mathbb{R}.)
(c) Explain why $M=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{3}+y^{3}+z^{3}=10\right\}$ is a smooth manifold. What is its dimension, i.e., for which k does M "look locally like" \mathbb{R}^{k} ?
3. Let $H: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by

$$
H(x, y, z, w)=\left(x^{3}+y^{3}+z^{3}, x^{4}+y^{4}+z^{4}+w^{4}\right)
$$

(a) Find the Jacobian matrix $D H_{\hat{x}}$. What are the dimensions of this matrix? (b) Note that \hat{x} is a regular point as long as $D H_{\hat{x}}$ gives a surjective linear transformation from $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, i.e., as long as $D H_{\hat{x}}$ has rank two. Explain why this happens in this case if and only if its two rows are independent vectors in \mathbb{R}^{4}.
(c) Find the critical points and regular points of H (Note these are both subsets of \mathbb{R}^{4}.)
(d) Find the critical values and regular values of H (Note these are both subsets of \mathbb{R}^{2}.)
(e) Explain why $N=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{3}+y^{3}+z^{3}=10, x^{4}+y^{4}+z^{4}+w^{4}=\right.$ $20\}$ is a smooth manifold. What is its dimension?
4. Recall that a topological group (G, \star) is a group where G is a topological space and the group structure maps $\star: G \times G \rightarrow G$ and $I: G \rightarrow G, I(x)=$ x^{-1} are continuous.
(a) For fixed $g_{0} \in G$ we define the left translation by g_{0} map, $L_{g_{0}}: G \rightarrow G$, via $L_{g_{0}}(x)=g_{0} \star x$. Show that $L_{g_{0}}$ is a continuous map. (Hint: Let $c: G \rightarrow G$ be the constant map with value g_{0} and consider $F: G \rightarrow G \times G$ given by $F(x)=(c(x), x)$ and its composition with $\star: G \times G \rightarrow G$.)
(b) Let $R_{g_{0}}$ be the right translation by g_{0} map, $R_{g_{0}}: G \rightarrow G$, defined via $R_{g_{0}}(x)=x \star g_{0}$. Show that any right or left translation maps $L_{g_{0}}, R_{g_{0}}$ are homeomorphisms $G \rightarrow G$.
(c) Show that the inversion map $I: G \rightarrow G, I(x)=x^{-1}$ is a homeomorphism.
(d) Show that if W is open in G then $W^{-1}=\left\{w^{-1} \mid w \in W\right\}$ is also open in G. Show that C is closed in G if and only if C^{-1} is closed in G.
(e) For given fixed $x, y \in G$ show that there is a unique left translation map $L_{z}: G \rightarrow G$ such that $L_{z}(x)=y$. What is z ? (Note this problem shows that topological groups are "homogeneous spaces", i.e., given two points in the space, there is a self-homeomorphism of the space taking one point to the other.)
5. (a) Let $\left(G_{1}, \star_{1}\right)$ and $\left(G_{2}, \star_{2}\right)$ be groups. Show that the product set $\left(G_{1} \times\right.$ $\left.G_{2}\right)$ is a group under the binary operation $\left(g_{1}, g_{2}\right) \star\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1} \star_{1} g_{1}^{\prime}, g_{2} \star_{2} g_{2}^{\prime}\right)$. $G_{1} \times G_{2}$ is called the product group of G_{1} and G_{2}.
(b) If G_{1} and G_{2} are topological groups show that the product group $G_{1} \times G_{2}$ is a topological group under the product topology.
(c) If G_{1} and G_{2} are Lie groups show that the product group $G_{1} \times G_{2}$ is a Lie group.
6. Let (G, \star) be a topological group and let e be its identity element.
(a) Show that if $\{e\}$ is a closed set in G then G is a T_{1}-space, i.e., a space where every singleton set $\{x\}$ is closed.
(b) Let A, B be subsets of G we define $A \star B=\{a \star b \mid a \in A, b \in B\}$. Show that $A \star B$ is open in G if either A or B are. (Hint: First show $A \star B=\cup_{a \in A} L_{a}(B)$ where L_{a} are left translation maps.)
(c) Let U, V be open subsets of \mathbb{R}^{n}, explain briefly why

$$
U+V=\{u+v \mid u \in U, v \in V\}
$$

is open in \mathbb{R}^{n}.
(d) A symmetric neighborhood of the identity is an open set V such that
$e \in V$ and $V^{-1}=V$. Show that if U is any open neighborhood of e in G, then there exists a symmetric neighborhood V such that $V \star V \subseteq U$. (Hint: The map $\star: G \times G \rightarrow G$ is continuous and takes (e, e) to e.)
(e) Let $(G, \star)=(\mathbb{R},+)$ and $A=[1,2), B=(-2,3)$. Find the set $A \star B=$ $A+B$ explicitly and also find a symmetric neighborhood V of $e=0$ such that $V+V \subseteq B$.
7. Let (G, \star) be a topological group.
(a) Let $f: G \times G \rightarrow G$ be given by $f(x, y)=x y^{-1}$. Show that f is continuous.
(b) Show that G is a T_{1}-space if and only if it is a Hausdorff space. (Hint: If $\{e\}$ is closed in G consider $f^{-1}(\{e\})$ in $G \times G$.)
8. It was mentioned in class that the special linear group

$$
S L_{n}(\mathbb{R})=\{\mathbb{A} \mid \operatorname{det}(\mathbb{A})=1\}
$$

is a Lie group. In this exercise you will help verify this in the case $n=2$.
(a) Identify $M a t_{2}(\mathbb{R})$ as \mathbb{R}^{4}, the determinant map $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a d-b c$ is then identified with the map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ by $f(a, b, c, d)=a d-b c$. Find the critical points, regular points, critical values and regular values of this map. (b) $S L_{2}(\mathbb{R})=\operatorname{det}^{-1}(\{1\})$. Show that 1 is a regular value of the determinant map in (a) and hence conclude that $S L_{2}(\mathbb{R})$ is a smooth manifold and hence is a Lie group. What is its dimension?
9. Let $O(n)=\left\{\mathbb{A} \in \operatorname{Mat}_{n}(\mathbb{R}) \mid \mathbb{A}^{T}=\mathbb{I}\right\}$ be the orthogonal group.

Defining $f: \operatorname{Mat}_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ given by $f(\mathbb{A})=\mathbb{A}^{T}$ one can see that $O(n)=f^{-1}(\{\mathbb{I}\})$. It can be shown that \mathbb{I} is a regular value of f and so $O(n)$ is a smooth manifold and hence a Lie group - you may use this freely in this exercise.
(a) The vector space $\operatorname{Sym}_{n}(\mathbb{R})=\left\{B \in \operatorname{Mat}_{n}(\mathbb{R}) \mid B^{T}=B\right\}$ is the vector space of symmetric $n \times n$ matrices. (This has to be used as the codomain of f instead of the larger codomain $\operatorname{Mat}_{n}(\mathbb{R})$ as \mathbb{I} can be shown to not be a regular value if the larger codomain is used.) Find a basis of $\operatorname{Sym}_{2}(\mathbb{R})$ as a real vector space and hence find its dimension.
(Hint: $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b ?+d ?$)
(b) Explain why the dimension of $\operatorname{Sym}_{n}(\mathbb{R})$ as a real vector space for general
$n \geq 1$ is $1+2+\cdots+n=\frac{n(n+1)}{2}$.
(c) Find the dimension of $O(n)$ as a smooth manifold for general $n \geq 1$ using the regular value theorem and the fact that $f(A)=A A^{T}$ has \mathbb{I} as a regular value when viewed as a map from $M a t_{n}(R)=\mathbb{R}^{n^{2}} \rightarrow \operatorname{Sym}_{n}(R)=\mathbb{R}^{\frac{n(n+1)}{2}}$.

