
MATH 240H: Homework 7: Metric Space Analysis.
Due Saturday, March 23, 11:59PM on Gradescope.com

1. Let (X, d) be a metric space. Check that an infinite sequence {xn|n ∈ Z+}
converges to α in X if and only if the sequence of distances d(xn, α) converges
to 0 in R with the standard topology. More succinctly

(xn → α ∈ X) ⇐⇒ (d(xn, α)→ 0 ∈ R)

2. A normed space is a real vector space V equipped with a ”length/norm”
function || · || : V → R where ||v̂|| is interpreted as ”the length of v̂”. The
norm is required to satisfy the following properties:
(1) ||v̂|| ≥ 0 and ||v̂|| = 0 ⇐⇒ v̂ = 0̂.
(2) ||αv̂|| = |α|||v̂|| for all α ∈ R, v̂ ∈ V .
(3) ||v̂ + ŵ|| ≤ ||v̂||+ ||ŵ|| for all v̂, ŵ ∈ V .
(a) Show that in any normed vector space (V, || · ||), the formula d(x̂, ŷ) =
||x̂− ŷ|| defines a metric on V .
(b) In Rn, the Euclidean norm is defined via ||v̂|| =

√
v̂ · v̂ where · is the

standard dot product. Verify properties (1) and (2) for this norm.
(c) To verify property (3), it is easier to first prove the Cauchy-Schwartz
inequality:

|v̂ · ŵ| ≤ ||v̂||||ŵ||

Please provide a direct proof of this. (Hint: Reduce to the case v̂, ŵ 6= 0, let
a = 1

||v̂|| , b = 1
||ŵ|| and use the fact that ||av̂ ± bŵ|| ≥ 0 which follows as you

have verified properties (1) and (2) already.)
(d) Finish the proof that the Euclidean norm is indeed a norm i.e., verify
property (3) for this norm. (Hint: Compute (û+ v̂) · (û+ v̂) and apply (c).)

3. A function f : (X, d) → (Y,D) between two metric spaces is called α-
Holder continuous if there are constants C, α > 0 such that

D(f(x1), f(x2)) ≤ Cd(x1, x2)
α

for all x1, x2 ∈ X. The function is called Lipshitz if it is Holder continuous
with α = 1 i.e.,

D(f(x1), f(x2)) ≤ Cd(x1, x2)

for all x1, x2 ∈ X.
(a) Prove that (thankfully) every Holder continuous function (for any α > 0)
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is continuous. (Hint: It might be easiest to use that a function is continu-
ous if and only if it is ”good with sequences” as we are in a metric setting.
Problem 1 might then be helpful.)
(b) Prove that if f : R→ R is Holder continuous with α > 1 (where the do-
main and codomain are given the usual metric d(x, y) = |x−y|) then f must
be a constant function. (Hint: Use the definition of a derivative in calculus

as f ′(x) = limy→x
f(y)−f(x)

y−x to show that a Holder continuous function with
α > 1 has a very special derivative everywhere. Then use a basic fact from
calculus.)
(c) Show that f : (0,∞) → (0,∞) given by f(x) = 1

x
is not Lipschitz with

respect to the standard metric of the real line, even though it is continuous.
(Hint: Compute an explicit formula for |f(x)−f(y)||x−y| .)

4. Let (X, d) be a metric space. Equip R with its standard metric thru out
this problem.
(a) Show that d : X×X → R is continuous where X×X is given the product
topology.
(b) Show that for fixed a ∈ X, the function f(x) = d(x, a) : X → R is
Lipschitz and hence continuous. (Hint: Show |d(x, a)− d(y, a)| ≤ d(x, y).)
(c) Let A ⊆ X, we define DA(x) = inf{d(x, a)|a ∈ A}. This is called the
distance between x and the set A. Note if the infimum is achieved, DA(x)
represents the distance between x and the ”closest” point in A. Show that
DA(x) = 0 if and only if x ∈ Ā, i.e., x is in the closure of A.
(d) Show that the function DA : X → R satisfies |DA(x)−DA(y)| ≤ d(x, y)
and is hence Lipschitz (and so continuous).
(e) For ε > 0, Aε, the ε-neighborhood of A, is defined as

Aε = {x ∈ X|DA(x) < ε}.

Explain why Aε is an open set of X containing A.
(f) A Gδ (read ”G-Delta”) set A in a topological space X is a set which is
the countable intersection of open sets, i.e., A = ∩∞n=1Un where Un is open in
X. Prove in a metric space (X, d), that every closed set is a Gδ set. (Hint:
First prove that if A is closed then A = ∩∞n=1Un where Un is the ε = 1

n
neigh-

borhood of A.)
(g) A Fσ (read ”F-Sigma”) set B in a topological space X is a set which is
the countable union of closed sets, i.e., B = ∪∞n=1Cn where Cn is closed in
X. Prove in a metric space (X, d), that every open set is a Fσ set.
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5. In this question we will consider Rω in the product topology, box topology
and uniform topology. Recall the uniform topology is given by the metric
ρ(x̂, ŷ) = supn∈Z+ d̄(xn, yn) where d̄ is the cutoff metric corresponding to the
standard metric d(x, y) = |x− y| on R.
(a) For each of the following functions from R to Rω, for which of these three
topologies on Rω is the function continuous?
(i) f(t) = (t, 2t, 3t, 4t, . . . )
(ii) g(t) = (t, t, t, t, . . . )
(iii) h(t) = (t, t

2
, t
3
, t
4
, . . . )

(b) In which of the three topologies do the following sequences in Rω con-
verge? What do they converge to if they converge?
(i)
ŵ1 = (1, 1, 1, 1, . . . )
ŵ2 = (0, 2, 2, 2, . . . )
ŵ3 = (0, 0, 3, 3, . . . )
. . .
(ii)
x̂1 = (1, 1, 1, 1, . . . )
x̂2 = (0, 1

2
, 1
2
, 1
2
, . . . )

x̂3 = (0, 0, 1
3
, 1
3
, . . . )

. . .
(iii)
ŷ1 = (1, 0, 0, 0, . . . )
ŷ2 = (1

2
, 1
2
, 0, 0, . . . )

ŷ3 = (1
3
, 1
3
, 1
3
, 0, . . . )

. . .
(iv)
ẑ1 = (1, 1, 0, 0, . . . )
ẑ2 = (1

2
, 1
2
, 0, 0, . . . )

ẑ3 = (1
3
, 1
3
, 0, 0, . . . )

. . .

6. Let R∞ be the subset of Rω consisting of the real sequences that are even-
tually zero, i.e., of the form (x1, x2, . . . , xn, 0, 0, 0, . . . ) for some n. Describe
the sequences in the closure of R∞ in each of the following topologies on Rω.
(a) Product Topology.
(b) Box Topology.
(c) Uniform Topology.
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7. Let Sn : R→ R be given by Sn(x) =
∑n

k=1
1
2k

sin(4kx). We know for any
n ∈ Z+ this function is a continuous function of x as it is a finite sum of
continuous functions.
(a) Show that for any fixed x, the infinite series

∑∞
k=1

1
2k

sin(4kx) is absolutely
convergent and hence convergent. (Recall from calculus, a series

∑∞
k=1 ak is

absolutely convergent if
∑∞

k=1 |ak| < ∞. Please feel free to use any calculus
tests you would like to do this question - just state the test(s) you use.)
(b) From (a), we know S(x) =

∑∞
k=1

1
2k

sin(4kx) defines a well defined func-
tion S : R→ R. Show that |S(x)− Sn(x)| ≤ 1

2n
for all x ∈ R and n ∈ Z+.

(c) Recall on the function space Func(R,R) = {f : R → R} we have the
uniform metric given by ρ(f, g) = supx∈Rd̄(f(x), g(x)) where d̄ is the cutoff
metric corresponding to the standard metric of R. Compute ρ(S, Sn) and
use this to explain why Sn converges uniformly to S on the real line.
(d) Explain why S : R→ R is continuous.
(e) Compute the derivative S ′n(0). Does limn→∞ S

′
n(0) exist in R?

8. A ultrametric d on a set X is a function d : X ×X → R such that
(1) d(x, y) ≥ 0 and (d(x, y) = 0 ⇐⇒ x = y)
(2) d(x, y) = d(y, x)
(3) d(x, y) ≤ max(d(x, z), d(z, y)) for all x, y, z ∈ X.
Notice only the last property is different than the property of a usual metric.
(a) Show that every ultrametric is a metric, i.e. the last property implies
the triangle inequality. Give an example to show the converse is not true.
(Sometimes an ultrametric is called a non-Archimedean metric).
(b) Show that in an ultrametric space, if d(x, z) < d(y, z) then d(y, z) =
d(x, y). (Pictorially this means that the ”triangle” made by vertices x, y, z
has two sides of the same length and the third side is shorter or the same
length also.)
(c) Show that in an ultrametric space, that if two open balls of positive radius
have non empty intersection, then they must be nested, i.e. one ball must
be contained in the other ball. (Hint: First show that in ultrametric spaces,
if z ∈ Bd(x, r) then Bd(x, r) = Bd(z, r) i.e. that every point inside an open
ball can be used as the center of the ball! This is definitely not true in most
metrics but only true for ultrametrics!)

9. Fix a prime p. One learns in elementary arithmetic that any positive
integer n has a unique base p-expansion n = a0 + a1p + a2p

2 + · · · + akp
k
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where aj ∈ {0, 1, . . . , p − 1}. For example the base 3 expansion of 10 is
10 = 1 + 0 · 3 + 1 · 32.
(a) Find the base 2, 3, 5, 7 and 11 expansions for n = 24.
(b) Let Z denote the integers. For any integer n define the ”p-adic norm”
of n, denoted by ||n||p, as follows: ||0||p = 0, ||n||p = (1

p
)k where k is the

smallest nonnegative integer index such that ak 6= 0 in the base-p expansion
of

|n| = a0 + a1p+ · · ·+ amp
m.

In others words ||n||p = (1
p
)k if pk divides n but pk+1 does not divide n.

(Recall for any two nonzero integers m,n we say m divides n if n
m

is also an
integer.) Show that this ”norm” satisfies properties (1) and (3) in exercise
2 and also the property ||mn||p = ||m||p||n||p for any nonzero m,n. In fact
show that ||x+ y||p ≤ max(||x||p, ||y||p) in order to check (3).
(c) Find ||24||p for the primes p = 2, 3, 5, 7, 11.
(d) Show that dp(x, y) = ||x − y||p is an ultrametric on Z. This is called
the p-adic metric on Z (this metric can also be extended to the bigger set of
rational numbers after certain modifications).
(e) Show that for any of the p-adic metrics on Z, that the sequence an = n!
converges to 0.
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