
MATH 240H: Homework 5: Hausdorff spaces and Closures.
Due Saturday, Feb 24, 11:59PM on Gradescope.com

1. Show that if A is closed in X and B is closed in Y , then A× B is closed
in X × Y (with the product topology).

2. Show that a subspace of a Hausdorff space is Hausdorff.

3. Show that if X, Y are Hausdorff spaces then X × Y is Hausdorff.

4. Show that X is Hausdorff if and only if the diagonal ∆ = {(x, x)|x ∈ X}
is closed in X ×X.

5. Recall from class that the Zariski Topology on Rn is the topology where
the closed sets are of the form Z(P) = {(x1, . . . , xn) ∈ Rn|p(x1, . . . , xn) =
0 for all p ∈ P} where P is a collection of real polynomials. If the col-
lection is just a single polynomial p we will write Z(p) = {(x1, . . . , xn) ∈
Rn|p(x1, . . . , xn) = 0} for the zero set of p. Recall we also saw that the
Zariski Topology on R1 is the same as the cofinite (finite complement) topol-
ogy. The purpose of this exercise is to study this topology a bit in R2.
(a) Draw pictures of the Zariski closed sets

C1 = Z(x2 + y2 − 1)

and
C2 = Z(xy − 1)

in R2. Give a single polynomial p(x, y) such that C1 ∪ C2 = Z(p).
(b) Now consider the collection P = {x−2, y−3} of two polynomials. What
is Z(P) = Z(x− 2, y − 3) geometrically?
(c) A topological space X is called a T1-space if every singleton set {x} is
closed in X. Explain why Rn with the Zariski Topology is a T1-space.
(d) Show that R1 with the Zariski Topology gives an example of a T1 space
which is not Hausdorff.
(Note: The book shows that every Hausdorff space is T1, this shows that the
converse is not true in general.)

6. Given a topological space X and A ⊆ X, we say A is dense in X if Ā = X
where Ā is the closure of A. Show that in the standard topology on the real
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line R, both the set of rationals Q and the set of irrationals R−Q are dense.

7. Let A,B and Aα be subsets of a topological space X. Prove the following
facts about closures:
(a) If A ⊆ C, C closed in X then Ā ⊆ C. Thus Ā is the smallest closed set
of X containing A.
(b) If A ⊆ B then Ā ⊆ B̄.
(c) A ∪B = Ā ∪ B̄.
(d) ∪αAα ⊇ ∪Āα. Give an example where equality fails.
(e) A ∩B ⊆ Ā ∩ B̄. Give an example where equality fails.

8. Let S̄ω = Z+ ∪ {ω} be the set of positive integers together with the first
infinite ordinal ω ordered so ω is the largest element and the positive integers
has its usual ordering. This is a well-ordered set and we give it the order
topology. Show that ω ∈ Z̄+, i.e., ω is in the closure of the set of positive
integers in this space.

9. [Kuratowski’s Theorem]. Let X be a topological space. Notice the closure
operation defines a function C : P (X) → P (X) on the power set of X,
where C(A) = Ā. Similarly the complement operation defines a function
M : P (X) → P (X), where M(A) = X − A. Kuratowski studied the effects
of applying these two operations on a given set A in various orders and in
this exercise we will attempt to do the same!
(a) Explain why M ◦M = IdP (X) and C ◦ C = C where ◦ is composition of
operations.
(b) Because of (a), it is clear that if one is going to perform operations M and
C in various orders to a set A, one should only consider orders of operations
that alternate between applying C and M to get anything new. Let

A = (0, 1) ∪ (1, 2) ∪ {3} ∪ ([4, 5] ∩Q)

be a subset of R with the standard topology. Show that under alternate use
of closure and complement operations you can generate 14 distinct sets from
A. (Hint: Compute C(A),M(C(A)), C(M(C(A)) etc. until you get a repeat.
Then do the same for M(A), C(M(A)) etc. )
(c) [BONUS - OPTIONAL - 1 BONUS POINT] Kuratowski proved that in
general the maximum number of different sets one can generate from a set
A in a topological space X under the closure and complement operations is
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14. A key part of the proof is to prove that C ◦M ◦C ◦M ◦C ◦M ◦C ◦M =
C ◦M ◦ C ◦M in general. Provide a proof. You may look up stuff for help
but write it up in your own words.

10. (a) Let f : R→ R be given by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

Show that f is continuous at no point of the real line.
(Hint: If x ∈ Q, then f(x) = 1. Consider V = (0.5, 1.5) as an open nhd. of
f(x) and explain why no open nhd. U of x has f(U) ⊆ V . Then do a similar
thing for irrational points. )
(b) Let g : R→ R be given by

g(x) =

{
|x| if x ∈ Q
0 if x /∈ Q

Show that g is continuous at only one point on the real line. Which point is it?
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