MATH 240H: Homework 5: Hausdorff spaces and Closures. Due Saturday, Feb 24, 11:59PM on Gradescope.com

1. Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$ (with the product topology).

2. Show that a subspace of a Hausdorff space is Hausdorff.

3. Show that if X, Y are Hausdorff spaces then $X \times Y$ is Hausdorff.

4. Show that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) | x \in X\}$ is closed in $X \times X$.

5. Recall from class that the Zariski Topology on \mathbb{R}^n is the topology where the **closed** sets are of the form $Z(\mathfrak{P}) = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | p(x_1, \ldots, x_n) = 0$ for all $p \in \mathfrak{P}\}$ where \mathfrak{P} is a collection of real polynomials. If the collection is just a single polynomial p we will write $Z(p) = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | p(x_1, \ldots, x_n) = 0\}$ for the zero set of p. Recall we also saw that the Zariski Topology on \mathbb{R}^1 is the same as the cofinite (finite complement) topology. The purpose of this exercise is to study this topology a bit in \mathbb{R}^2 . (a) Draw pictures of the Zariski closed sets

$$C_1 = Z(x^2 + y^2 - 1)$$

and

$$C_2 = Z(xy - 1)$$

in \mathbb{R}^2 . Give a single polynomial p(x, y) such that $C_1 \cup C_2 = Z(p)$.

(b) Now consider the collection $\mathfrak{P} = \{x-2, y-3\}$ of two polynomials. What is $Z(\mathfrak{P}) = Z(x-2, y-3)$ geometrically?

(c) A topological space X is called a T_1 -space if every singleton set $\{x\}$ is closed in X. Explain why \mathbb{R}^n with the Zariski Topology is a T_1 -space.

(d) Show that \mathbb{R}^1 with the Zariski Topology gives an example of a T_1 space which is not Hausdorff.

(Note: The book shows that every Hausdorff space is T_1 , this shows that the converse is not true in general.)

6. Given a topological space X and $A \subseteq X$, we say A is **dense** in X if A = X where \overline{A} is the closure of A. Show that in the standard topology on the real

line \mathbb{R} , both the set of rationals \mathbb{Q} and the set of irrationals $\mathbb{R} - \mathbb{Q}$ are dense.

7. Let A, B and A_{α} be subsets of a topological space X. Prove the following facts about closures:

(a) If $A \subseteq C$, C closed in X then $\overline{A} \subseteq C$. Thus \overline{A} is the smallest closed set of X containing A.

- (b) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.
- (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

(d) $\overline{\bigcup_{\alpha} A_{\alpha}} \supseteq \bigcup_{\alpha} \overline{A_{\alpha}}$. Give an example where equality fails.

(e) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Give an example where equality fails.

8. Let $S_{\omega} = \mathbb{Z}_+ \cup \{\omega\}$ be the set of positive integers together with the first infinite ordinal ω ordered so ω is the largest element and the positive integers has its usual ordering. This is a well-ordered set and we give it the order topology. Show that $\omega \in \overline{\mathbb{Z}}_+$, i.e., ω is in the closure of the set of positive integers in this space.

9. [Kuratowski's Theorem]. Let X be a topological space. Notice the closure operation defines a function $C : P(X) \to P(X)$ on the power set of X, where $C(A) = \overline{A}$. Similarly the complement operation defines a function $M : P(X) \to P(X)$, where M(A) = X - A. Kuratowski studied the effects of applying these two operations on a given set A in various orders and in this exercise we will attempt to do the same!

(a) Explain why $M \circ M = Id_{P(X)}$ and $C \circ C = C$ where \circ is composition of operations.

(b) Because of (a), it is clear that if one is going to perform operations M and C in various orders to a set A, one should only consider orders of operations that alternate between applying C and M to get anything new. Let

$$A = (0,1) \cup (1,2) \cup \{3\} \cup ([4,5] \cap \mathbb{Q})$$

be a subset of \mathbb{R} with the standard topology. Show that under alternate use of closure and complement operations you can generate 14 distinct sets from A. (Hint: Compute C(A), M(C(A)), C(M(C(A)) etc. until you get a repeat. Then do the same for M(A), C(M(A)) etc.)

(c) [BONUS - OPTIONAL - 1 BONUS POINT] Kuratowski proved that in general the maximum number of different sets one can generate from a set A in a topological space X under the closure and complement operations is

14. A key part of the proof is to prove that $C \circ M \circ C \circ M \circ C \circ M \circ C \circ M = C \circ M \circ C \circ M$ in general. Provide a proof. You may look up stuff for help but write it up in your own words.

10. (a) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \notin \mathbb{Q} \end{cases}$$

Show that f is continuous at no point of the real line. (Hint: If $x \in \mathbb{Q}$, then f(x) = 1. Consider V = (0.5, 1.5) as an open nhd. of f(x) and explain why no open nhd. U of x has $f(U) \subseteq V$. Then do a similar thing for irrational points.) (b) Let $g : \mathbb{R} \to \mathbb{R}$ be given by

$$g(x) = \begin{cases} |x| \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \notin \mathbb{Q} \end{cases}$$

Show that g is continuous at only one point on the real line. Which point is it?