MATH 240H: Homework 5: Hausdorff spaces and Closures. Due Saturday, Feb 24, 11:59PM on Gradescope.com

1. Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$ (with the product topology).
2. Show that a subspace of a Hausdorff space is Hausdorff.
3. Show that if X, Y are Hausdorff spaces then $X \times Y$ is Hausdorff.
4. Show that X is Hausdorff if and only if the diagonal $\Delta=\{(x, x) \mid x \in X\}$ is closed in $X \times X$.
5. Recall from class that the Zariski Topology on \mathbb{R}^{n} is the topology where the closed sets are of the form $Z(\mathfrak{P})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid p\left(x_{1}, \ldots, x_{n}\right)=\right.$ 0 for all $p \in \mathfrak{P}\}$ where \mathfrak{P} is a collection of real polynomials. If the collection is just a single polynomial p we will write $Z(p)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\left.\mathbb{R}^{n} \mid p\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ for the zero set of p. Recall we also saw that the Zariski Topology on \mathbb{R}^{1} is the same as the cofinite (finite complement) topology. The purpose of this exercise is to study this topology a bit in \mathbb{R}^{2}.
(a) Draw pictures of the Zariski closed sets

$$
C_{1}=Z\left(x^{2}+y^{2}-1\right)
$$

and

$$
C_{2}=Z(x y-1)
$$

in \mathbb{R}^{2}. Give a single polynomial $p(x, y)$ such that $C_{1} \cup C_{2}=Z(p)$.
(b) Now consider the collection $\mathfrak{P}=\{x-2, y-3\}$ of two polynomials. What is $Z(\mathfrak{P})=Z(x-2, y-3)$ geometrically?
(c) A topological space X is called a T_{1}-space if every singleton set $\{x\}$ is closed in X. Explain why \mathbb{R}^{n} with the Zariski Topology is a T_{1}-space.
(d) Show that \mathbb{R}^{1} with the Zariski Topology gives an example of a T_{1} space which is not Hausdorff.
(Note: The book shows that every Hausdorff space is T_{1}, this shows that the converse is not true in general.)
6. Given a topological space X and $A \subseteq X$, we say A is dense in X if $\bar{A}=X$ where \bar{A} is the closure of A. Show that in the standard topology on the real
line \mathbb{R}, both the set of rationals \mathbb{Q} and the set of irrationals $\mathbb{R}-\mathbb{Q}$ are dense.
7. Let A, B and A_{α} be subsets of a topological space X. Prove the following facts about closures:
(a) If $A \subseteq C, C$ closed in X then $\bar{A} \subseteq C$. Thus \bar{A} is the smallest closed set of X containing A.
(b) If $A \subseteq B$ then $\bar{A} \subseteq \bar{B}$.
(c) $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(d) $\overline{\cup_{\alpha} A_{\alpha}} \supseteq \cup \bar{A} \bar{A}_{\alpha}$. Give an example where equality fails.
(e) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$. Give an example where equality fails.
8. Let $\bar{S}_{\omega}=\mathbb{Z}_{+} \cup\{\omega\}$ be the set of positive integers together with the first infinite ordinal ω ordered so ω is the largest element and the positive integers has its usual ordering. This is a well-ordered set and we give it the order topology. Show that $\omega \in \overline{\mathbb{Z}}_{+}$, i.e., ω is in the closure of the set of positive integers in this space.
9. [Kuratowski's Theorem]. Let X be a topological space. Notice the closure operation defines a function $C: P(X) \rightarrow P(X)$ on the power set of X, where $C(A)=\bar{A}$. Similarly the complement operation defines a function $M: P(X) \rightarrow P(X)$, where $M(A)=X-A$. Kuratowski studied the effects of applying these two operations on a given set A in various orders and in this exercise we will attempt to do the same!
(a) Explain why $M \circ M=I d_{P(X)}$ and $C \circ C=C$ where \circ is composition of operations.
(b) Because of (a), it is clear that if one is going to perform operations M and C in various orders to a set A, one should only consider orders of operations that alternate between applying C and M to get anything new. Let

$$
A=(0,1) \cup(1,2) \cup\{3\} \cup([4,5] \cap \mathbb{Q})
$$

be a subset of \mathbb{R} with the standard topology. Show that under alternate use of closure and complement operations you can generate 14 distinct sets from A. (Hint: Compute $C(A), M(C(A)), C(M(C(A))$ etc. until you get a repeat. Then do the same for $M(A), C(M(A))$ etc.)
(c) [BONUS - OPTIONAL - 1 BONUS POINT] Kuratowski proved that in general the maximum number of different sets one can generate from a set A in a topological space X under the closure and complement operations is
14. A key part of the proof is to prove that $C \circ M \circ C \circ M \circ C \circ M \circ C \circ M=$ $C \circ M \circ C \circ M$ in general. Provide a proof. You may look up stuff for help but write it up in your own words.
10. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \in \mathbb{Q} \\
0 \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Show that f is continuous at no point of the real line.
(Hint: If $x \in \mathbb{Q}$, then $f(x)=1$. Consider $V=(0.5,1.5)$ as an open nhd. of $f(x)$ and explain why no open nhd. U of x has $f(U) \subseteq V$. Then do a similar thing for irrational points.)
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
g(x)=\left\{\begin{array}{l}
|x| \text { if } x \in \mathbb{Q} \\
0 \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Show that g is continuous at only one point on the real line. Which point is it?

