MATH 240H: Homework 3: Topological Spaces, Basis and Ordered Sets. Due Saturday, Feb 10, 11:59PM

1. Let X be a nonempty set.
(a) Explain why $\mathfrak{B}_{1}=\{\{x\} \mid x \in X\}$, the collection of singleton sets, is a basis for a topology on X. What topology does it generate?
(b) Explain why $\mathfrak{B}_{2}=\{X\}$ is a basis for a topology on X. What topology does it generate?
2. Consider the following topologies on the plane \mathbb{R}^{2}.
τ_{1} the topology arising from the basis of open disks of positive radius. This is called the standard topology of the plane.
τ_{2} the topology arising from the basis
$\mathfrak{B}_{2}=\{[a, b) \times[c, d) \mid a<b, c<d, a, b, c, d \in \mathbb{R}\}$.
τ_{3} the topology arising from the basis
$\mathfrak{B}_{3}=\{[a, b] \times[c, d] \mid a<b, c<d, a, b, c, d \in \mathbb{R}\}$.
τ_{4} the topology arising from the basis
$\mathfrak{B}_{4}=\{(a, b] \times(c, d] \mid a<b, c<d, a, b, c, d \in \mathbb{R}\}$.
Let
$A=\left\{(x, y) \in \mathbb{R}^{2} \mid x y>1, x>0, y>0\right\}$,
$B=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geq 1, x>0, y>0\right\}$,
$C=\left\{(x, y) \in \mathbb{R}^{2} \mid x y>1, x<0, y<0\right\}$,
$D=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geq 1, x<0, y<0\right\}$.
For each of the sets A, B, C, D draw a rough sketch of the region and state which of the four topologies the set is open in and which ones it is not open in.
3. (a) Let r be a rational number. Show that for any $\epsilon>0$, there exists rational numbers q_{1}, q_{2} such that $r-\epsilon<q_{1}<r<q_{2}<r+\epsilon$. (Hint: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$).
(b) Explain why any real number whose decimal expansion is eventually all zeros or all nines is a rational number.
(c) Let ξ be an irrational real number. For any $\epsilon>0$, show that there exists rational numbers q_{1}, q_{2} such that $\xi-\epsilon<q_{1}<\xi<q_{2}<\xi+\epsilon$.
(Notice that from (a) and (c), you have shown any real number has rational numbers arbitrarily close below and above it.)
4. (a) The basis $\mathfrak{B}_{1}=\{(a, b) \mid a<b, a, b \in \mathbb{R}\}$ of all open intervals is a basis for the standard topology on the real line \mathbb{R}.

Consider the smaller basis $\mathfrak{B}_{2}=\{(a, b) \mid a<b, a, b \in \mathbb{Q}\}$ of all open intervals with rational endpoints.
(a) Show that \mathfrak{B}_{1} and \mathfrak{B}_{2} determine the same topology.
(b) Show that \mathfrak{B}_{1} is an uncountable set. (Hint: Define a map \mathfrak{B}_{1} onto \mathbb{R}).
(c) Show that \mathfrak{B}_{2} is a countable set. (Hint: Define a bijection between \mathfrak{B}_{2} and a subset of $\mathbb{Q} \times \mathbb{Q}$.)
(Notice then that in this example you have seen an example showing that the cardinality of a basis for a given topology is not unique (unlike basis for vector spaces). Also you have shown that the standard topology on \mathbb{R} does have a countable basis. A topological space which has a countable basis for its topology is called second countable.)
5. Show that the basis $\{[a, b), a<b, a, b \in \mathbb{Q}\}$ generates a different topology on \mathbb{R} than the basis $\{[a, b), a<b, a, b \in \mathbb{R}\}$. Which one is finer?
6. Show that the dictionary order topology on the plane \mathbb{R}^{2} is strictly finer than the standard topology coming from the basis of open disks. (Hint: Consider dictionary order open intervals of the form $(x \times y, x \times z)$ where we used $x \times y$ to denote the Cartesian product to not confuse it with the interval notation.)
7. Recall for a nonempty subset S of the real numbers \mathbb{R}, we define the supremum, denoted $\sup (S)$, as either ∞ if S is not bounded above or as the least upper bound of S if it is bounded above.
Similarly we define the infimum, denoted $\inf (S)$, as either $-\infty$ if S is not bounded below or as the greatest lower bound of S if it is bounded below.

We say S has a maximum $\sup (S)$ only if $\sup (S) \in S$ and otherwise say S has no maximum. Similarly we say S has a minimum $\inf (S)$ only if $\inf (S) \in S$ and otherwise say S has no minimum.

For each of the following subsets of \mathbb{R} in the standard ordering $<$, determine their minimum, maximum, supremum and infimum if they exist.
(a) $A=[0,1)$.
(b) $B=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}$.
(c) $C=\mathbb{Z}_{+}$.
8. An ordered set $(X,<)$ is said to have the least upper bound property if every nonempty subset S with an upper bound in X has a least upper bound. Similarly it is said to have the greatest lower bound property if every
nonempty subset S with a lower bound in X has a greatest lower bound. Show that if $(X,<)$ has the least upper bound property then it automatically has the greatest lower bound property. (Hint: Consider the set of lower bounds of a given subset S.)
9. Recall a well ordered set is an ordered set $(X,<)$ where every nonempty subset S has a minimum element $s \in S$.
(a) Show that a well ordered set has the least upper bound property.
(b) Show that in a well ordered set, every element (except the largest if one exists) has an immediate successor.
10. Show that if $\left(X,<_{X}\right)$ and $\left(Y,<_{Y}\right)$ are well-ordered sets then $\left(X \times Y,<_{\text {dict }}\right)$ is also well-ordered. Here $<_{\text {dict }}$ is the dictionary ordering.
11. Two ordered sets $\left(X,<_{X}\right)$ and $\left(Y,<_{Y}\right)$ have the same order type if there is a bijection $X \rightarrow Y$ which preserves order i.e., such that $x_{1}<x_{2} \rightarrow f\left(x_{1}\right)<$ $f\left(x_{2}\right)$. Show the following:
(a) If X and Y have the same order type and X has a smallest element then so does Y.
(b) If $f: X \rightarrow Y$ is an order preserving bijection and a is an immediate predecessor of b in X, then $f(a)$ is an immediate predecessor of $f(b)$ in Y.
(c) Show that an order preserving bijection $f: X \rightarrow Y$ will induce a bijection between the set of elements in X with an immediate predecessor and the set of elements in Y with an immediate predecessor.
12. Consider the ordered sets $\left(\mathbb{Z}_{+},<\right),(\mathbb{Z},<)$ and $(\mathbb{Q},<)$, all with the ordering coming from the usual ordering of real numbers. In addition consider the sets $\{0,1\} \times \mathbb{Z}_{+}$and $\mathbb{Z}_{+} \times\{0,1\}$ with dictionary orderings and where $\{0,1\}$ is ordered by $0<1$. Only two of these five sets have the same order type - thus they determine 4 distinct order types. Using ideas similar to those studied in Problem 11, for each pair of these 5 sets, decide if they have the same order type or not. If you determine they do not, just state a short reason why not and if you state that they do, provide an explicit description of the order-preserving bijection. Notice that all 5 sets are countably infinite so these give examples of ordered sets with bijections between them but no order-preserving bijection between them.

