MATH 240H: Homework 3: Topological Spaces, Basis and Ordered Sets.
Due Saturday, Feb 10, 11:59PM

1. Let X be a nonempty set.

(a) Explain why 8 = {{z}|x € X}, the collection of singleton sets, is a
basis for a topology on X. What topology does it generate?

(b) Explain why B, = {X} is a basis for a topology on X. What topology
does it generate?

2. Consider the following topologies on the plane R2.

71 the topology arising from the basis of open disks of positive radius. This
is called the standard topology of the plane.

79 the topology arising from the basis

By = {[a,b) x [c,d)|a < b,c < d,a,b,c,d e R}.

73 the topology arising from the basis

By = {[a,b] x [¢,d]|la < b,c<d a,b,cdeR}.

74 the topology arising from the basis

B, = {(a,b] x (¢,d]|la < b,c < d,a,b,c,d € R}.

Let

A={(z,y) € R¥zy > 1,2 > 0,y > 0},
B ={(x,y) € R*lzy > 1,2 > 0,y > 0},
C={(z,y) € R?|zy > 1,2 < 0,y < 0},

D = {(z,y) e R*|zy > 1,2 < 0,y < 0}.
For each of the sets A, B,C, D draw a rough sketch of the region and state
which of the four topologies the set is open in and which ones it is not open in.

3. (a) Let r be a rational number. Show that for any € > 0, there exists ratio-
nal numbers ¢, o such that r—e < ¢; <r < ¢o < r+e. (Hint: limn_m% =0
).

(b) Explain why any real number whose decimal expansion is eventually all
zeros or all nines is a rational number.

(c) Let € be an irrational real number. For any € > 0, show that there exists
rational numbers ¢, ¢ such that £ —e < ¢y <& <@ <&+ €.

(Notice that from (a) and (c), you have shown any real number has rational
numbers arbitrarily close below and above it.)

4. (a) The basis B, = {(a,b)|a < b,a,b € R} of all open intervals is a basis
for the standard topology on the real line R.



Consider the smaller basis 8, = {(a,b)|a < b,a,b € Q} of all open intervals
with rational endpoints.

(a) Show that B, and B, determine the same topology.

(b) Show that 9B, is an uncountable set. (Hint: Define a map B, onto R).
(c) Show that B, is a countable set. (Hint: Define a bijection between B,
and a subset of Q x Q.)

(Notice then that in this example you have seen an example showing that
the cardinality of a basis for a given topology is not unique (unlike basis for
vector spaces). Also you have shown that the standard topology on R does
have a countable basis. A topological space which has a countable basis for
its topology is called second countable.)

5. Show that the basis {[a,b),a < b,a,b € Q} generates a different topology
on R than the basis {[a,b),a < b,a,b € R}. Which one is finer?

6. Show that the dictionary order topology on the plane R? is strictly finer
than the standard topology coming from the basis of open disks. (Hint: Con-
sider dictionary order open intervals of the form (z x y, x X z) where we used
x X y to denote the Cartesian product to not confuse it with the interval
notation.)

7. Recall for a nonempty subset S of the real numbers R, we define the
supremum, denoted sup(.S), as either oo if S is not bounded above or as the
least upper bound of §S' if it is bounded above.
Similarly we define the infimum, denoted inf(S), as either —oo if S is not
bounded below or as the greatest lower bound of S if it is bounded below.
We say S has a maximum sup(.S) only if sup(S) € S and otherwise say S
has no maximum. Similarly we say S has a minimum inf(S) only if inf(S) € S
and otherwise say S has no minimum.
For each of the following subsets of R in the standard ordering <, deter-
mine their minimum, maximum, supremum and infimum if they exist.
(a) A=10,1).
(b) B={inez.}.
(c) C=12Z,.

8. An ordered set (X, <) is said to have the least upper bound property

if every nonempty subset S with an upper bound in X has a least upper
bound. Similarly it is said to have the greatest lower bound property if every
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nonempty subset S with a lower bound in X has a greatest lower bound.
Show that if (X, <) has the least upper bound property then it automati-
cally has the greatest lower bound property. (Hint: Consider the set of lower
bounds of a given subset S.)

9. Recall a well ordered set is an ordered set (X, <) where every nonempty
subset S has a minimum element s € S.

(a) Show that a well ordered set has the least upper bound property.

(b) Show that in a well ordered set, every element (except the largest if one
exists) has an immediate successor.

10. Show that if (X, <x) and (Y, <y) are well-ordered sets then (X XY, <gict)
is also well-ordered. Here < is the dictionary ordering.

11. Two ordered sets (X, <x) and (Y, <y) have the same order type if there
is a bijection X — Y which preserves order i.e., such that 1 < o — f(z1) <
f(x2). Show the following:

(a) If X and Y have the same order type and X has a smallest element then
so does Y.

(b) If f: X — Y is an order preserving bijection and a is an immediate
predecessor of b in X, then f(a) is an immediate predecessor of f(b) in Y.
(c) Show that an order preserving bijection f : X — Y will induce a bijection
between the set of elements in X with an immediate predecessor and the set
of elements in Y with an immediate predecessor.

12. Consider the ordered sets (Z,, <), (Z, <) and (Q, <), all with the order-
ing coming from the usual ordering of real numbers. In addition consider the
sets {0,1} x Z, and Z, x {0,1} with dictionary orderings and where {0, 1}
is ordered by 0 < 1. Only two of these five sets have the same order type
- thus they determine 4 distinct order types. Using ideas similar to those
studied in Problem 11, for each pair of these 5 sets, decide if they have the
same order type or not. If you determine they do not, just state a short
reason why not and if you state that they do, provide an explicit description
of the order-preserving bijection. Notice that all 5 sets are countably infinite
so these give examples of ordered sets with bijections between them but no
order-preserving bijection between them.



