
MATH 240H: Homework 2: Functions and Cardinality.
Due Saturday, Feb 3, 11:59PM on Gradescope.com

1. Let f : A → B and g : B → C be functions and g ◦ f : A → C be their
composition.
Show that for any S ⊆ C we have (g ◦ f)−1(S) = f−1(g−1(S)) as an equality
of preimage sets.

2. In class, we saw that if f : A → B and g : B → A have g ◦ f = 1A

then f must be injective and g must be surjective. Show by constructing an
explicit example that f need not be surjective and g need not be injective in
this situation. (Hint: examples using finite sets or ”calculus functions” exist.)

3. Recall given a set X, Xn = X × · · · × X = {(x1, x2, . . . , xn)|xi ∈
X for all 1 ≤ i ≤ n} is the n-fold Cartesian product of X with itself and
Xω = {(x1, x2, . . . )|xi ∈ X for all i ∈ Z+} is the set of infinite sequences in
X. Assume X 6= ∅ for this exercise. m,n ∈ Z+. Let α ∈ X be a specific
element that you can use if you need to:
(a) If m ≤ n, write down an explicit injective map f : Xm → Xn.
(b) Find an explicit bijective map Xm ×Xn → Xn+m.
(c) Find an explicit injective map Xn → Xω.
(d) Find an explicit bijective map Xn ×Xω → Xω.
(e) Find an explicit bijective map Xω ×Xω → Xω.
(f) Find an explicit bijective map (Xω)n → Xω.
(Hint: You might try to think about these in the case X = R first before
doing it for a general set if you find that helpful.)

4. The following subsets of Rω can be written as Cartesian products ×∞n=1An

where An ⊆ R for all n ∈ Z+. Find the sets An in each of the following
examples. We will use the notation x̂ as shorthand for (x1, x2, . . . ).
(a) {x̂|xi is an integer for all i ∈ Z+}.
(b) {x̂|xi ≥ i for all i ∈ Z+}.
(c) {x̂|xi is an integer for all i ≥ 100}.

5. Let X be a set and A ⊆ X. The characteristic function of A is a func-
tion χA : X → {0, 1} such that χA(x) = 1 if x ∈ A and χA(x) = 0 if
x /∈ A. Let P (X) be the power set of X, i.e., the set of all subsets of X. Let
Func(X, {0, 1}) = {f : X → {0, 1}} be the set of all functions from X to
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{0, 1}. Define θ : P (X)→ Func(X, {0, 1}) via θ(A) = χA. Show that θ is a
bijection.

6. Let X be a nonempty set. Write down an explicit bijection between
Func({1, . . . , n}, X) = {f : {1, . . . , n} → X} and Xn.

7. Let X be a nonempty set. Write down an explicit injection h : X → P (X).
Notice h will induce a bijection between X and its image h(X) which is a
subset of P (X).

8. Let X be a finite nonempty set and let |X| denote its cardinality. It is a
fact that for finite sets X, Y , |X × Y | = |X||Y | and you may use that in this
problem.
(a) Show that |P (X)| = 2|X|. (Hint: Exercise 5 and 6 may be helpful.)
(b) Explain why part (a) and exercise 7 show that 2n ≥ n for all n ∈ Z+.
(c) Let Y X denote the X-fold Cartesian product of Y with itself i.e. Πx∈XY .
This consists of all ordered tuples, where the coordinates are indexed by el-
ements of X and whose entries come from the set Y . Describe a bijection
between Y X and the set Func(X, Y ) of functions from X to Y .
(d) If |Y | = n, |X| = m explain why |Y X | = nm.

9.
(a) Show that the set {0, 1}ω of infinite binary sequences is uncountable via
a ”Cantor diagonal argument”.
(b) Fix N ∈ Z+. A sequence (x1, x2, . . . ) is called N -periodic if xi+N = xi
for all i ∈ Z+. N is called the period. Explain why the set SN ⊆ {0, 1}ω of
N -periodic infinite binary sequences is finite and find its cardinality.
(c) Let S = ∪∞N=1SN be the set of periodic infinite binary sequences (of any
period). Show that S is a countably infinite set.
(d) Explain why there are uncountably many non-periodic infinite binary
sequences.
(e) A sequence is called ”eventually N -periodic” after m steps if ai+N = ai for
i > m. This allows the firstm terms to be anything but then the rest of the se-
quence has to be N -periodic. Let Sm,N be the set of infinite binary sequences
which are eventually N -periodic after m steps. Then S = ∪(m,N)∈Z+×Z+Sm,N

is the set of all ”eventually periodic infinite binary sequences”. Explain why
this set is countable and why there are uncountably many infinite binary
sequences which are not eventually periodic.
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10.
A monic rational polynomial of degree n is a polynomial of the form xn +
cn−1x

n−1 + · · ·+ c1x+ c0 where all the coefficients ci ∈ Q. Let Sn denote the
set of all such polynomials.
(a) Give an explicit bijection Qn → Sn and use it to explain why Sn is count-
able.
(b) Let S = ∪∞n=1Sn be the set of all monic, non constant rational polynomi-
als. Explain why this set is countable.
(c) For each nonzero polynomial p, it follows from basic algebra that the set
of complex zeroes, Z(p) = {a ∈ C|p(a) = 0} is finite. Define a complex num-
ber to be algebraic if it is the zero of a nonzero, monic rational polynomial.
Thus if we let A denote the set of algebraic numbers then A = ∪p∈SZ(p).
Use this to explain why there are only countably many algebraic numbers.
(d) A complex number is called transcendental if it is not algebraic. Ex-
plain why there are uncountably many transcendental complex numbers.
(Comment: In (c), (d) one could work within the real numbers instead of the
complex numbers with similar results.)

11. (Schroeder-Bernstein Theorem)
The purpose of this exercise is to prove a useful theorem called the Schroeder-
Bernstein Theorem which says that if there exist injective maps f : A → B
and g : B → A then there must exist a bijection between A and B. We will
prove this in a specific way:
(a) We first will consider a ”special case” where C ⊆ A and there is an in-
jective map h : A → C. Using the principle of recursive definition we can
define a sequence of sets An, n ∈ Z+ via A1 = A and An+1 = h(An) for
n ≥ 1. Similarly we can define a sequence of sets Cn, n ∈ Z+ via C1 = C
and Cn+1 = h(Cn) for n ≥ 1. Use the principle of mathematical induction to
show that A1 ⊇ C1 ⊇ A2 ⊇ C2 ⊇ A3 ⊇ . . . i.e., that An ⊇ Cn ⊇ An+1 for all
n ∈ Z+. Also draw a Venn diagram of these nested sets - it should look like
a set of concentric circles making ”rings” - label things reasonably.
(b) Now we will define a bijection Ψ : A→ C by Ψ(x) = h(x) if x ∈ An−Cn

for some n ∈ Z+ and Ψ(x) = x otherwise. Describe what Ψ does to the
”rings” in your Venn diagram heuristically and use this to help you provide
a proof that Ψ : A→ C is a bijection.
(c) Prove the Schroeder-Bernstein Theorem:
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Theorem 0.1 (Schroeder-Bernstein Theorem). Let A,B be sets, f : A →
B, g : B → A injective functions. Then there exists a bijection Θ : A→ B.

(Hint: Set C = g(B) ⊆ A and h : A→ C given by h(a) = g(f(a)) for all
a ∈ A. Then explain why parts (a) and (b) apply and how they can be used
to construct the bijection Θ : A→ B. )
(d) Consider A = (0, 1) the open unit interval and B = (0, 1)× (0, 1) ⊆ R2.
Construct explicit injective functions f : A → B and g : B → A. (Hint:
consider decimal expansions and ”shuffling them”). Thus by the Schroeder-
Bernstein theorem, there is a bijection between the open interval (0, 1) and
the ”unit open square” (0, 1)× (0, 1) so they have the same cardinality. This
shows that these two sets have the same ”number” of ”constituent atoms”.
However it is clear they don’t have the ”same shape” and later we will see
indeed that there is no ”shape preserving” bijection between them.
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