
MATH 240H: Homework 11: Assorted Topics and Applications.
Due Tuesday, April 23, 11:59PM on gradescope

1. (a) Show that any set X with the finite complement topology is compact
directly from the definitions.
(b) Explain briefly why that R1 with the Zariski topology is compact.
(c) Let Zω = Z+ ∪ {ω} = {1, 2, 3, . . . , ω} be the ordered set obtained by
adjoining a largest element ω to Z+. Show that Zω is compact in its order
topology.

2. Let X be a topological space. Show that a finite union of compact sub-
spaces of X is compact.

3. Let X be a Hausdorff topological space and A,B compact subspaces with
A ∩ B = ∅. Show that there are disjoint sets U, V which are open in X,
such that A ⊆ U,B ⊆ V . [Hint: First prove it in the case B is a single
point b. Consider each a ∈ A and find disjoint open sets Ua, Va such that
a ∈ Ua, b ∈ Va and carefully construct U and V from these. When generaliz-
ing to the case where B is not a single point, for each b in B, first construct
two disjoint open sets, one containing A and one containing b.]

4. Let (X, d) be a metric space. Given a bounded subset A, the diameter of
A, denoted diam(A) is defined by

diam(A) = sup{d(x, y)|x, y ∈ A}.

(a) Show that if C is a compact subspace of X, then there exists x, y ∈ C
such that d(x, y) = diam(C).
(b) Give an example of a bounded subset A of R2 where there does not exist
x, y ∈ A such that d(x, y) = diam(A).

5. Let (G, ?) be a topological group. Let A,B be subspaces of G.
(a) If A is closed and B is compact show that A ? B is closed. (Hint: Let
c ∈ G, c /∈ A?B. Let f : G×B → G be given by f(x, y) = x ? y−1 and show
that f−1(G − A) is an open neighborhood of the slice c × B. Use the tube
lemma to find an open neighborhood W of c such that W ×B ⊆ f−1(G−A).
Finish by explaning why your work shows G− A ? B is open.)
(b) Let A = Z+ and B = {−n+ 1

n
|n ≥ 2, n ∈ Z}. Show that A, B are closed

1



subsets of (R,+) but A + B = {a + b|a ∈ A, b ∈ B} is not closed. Thus (a)
does not hold if B is only required to be closed but not compact.

6. (a) Let X be a topological space and C1 ⊇ C2 ⊇ C3 ⊇ . . . be a nested se-
quence of nonempty closed subspaces. If C1 is compact explain why ∩∞n=1Cn
is nonempty. (Hint: Work within C1 and consider Uj = C1−Cj and explain
why it is open in C1.)
(b) Let Y be a compact (nonempty) topological space and let f : Y → Y
be continuous. Define recursively Y0 = Y and Yn = f(Yn−1) for n ∈ Z+.
Show that Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . is a nested sequence of compact spaces. If
Y is assumed in addition to be Hausdorff explain why Y∞ = ∩∞n=1Yn is a
nonempty compact subspace of Y and f : Y∞ → Y∞.
(c) Show that Y∞ = ∅ is possible if compactness is dropped in (b) by consid-
ering the example of f : Y → Y , Y = (0, 1), f(t) = t

2
.

(d) Show that f : Y∞ → Y∞ is surjective when Y is a compact, metric
space. (Hint: Fix b ∈ Y∞ and first explain why there exist ak ∈ Yk such that
f(ak) = b. Then explain why there is a subsequence of the ak that converge
to some limit α ∈ Y∞ and why f(α) = b).

7. (a) Let (Y, d) be a compact metric space and f : Y → Y be a shrinking
map i.e., d(f(a), f(b)) < d(a, b) for all a 6= b ∈ Y . Show that f has a unique
fixed point in Y , i.e., a unique y0 ∈ Y such that f(y0) = y0. (Hint: Use
exercise 6 and then exercise 4 to show that Y∞ has diameter zero.)
(b) Give an example of a metric space Y and a shrinking map f : Y → Y
which does not have a fixed point.

8. (Consulting exercise 4 of homework 7 might be useful when doing this
exercise.)
(a) Let (X, d) be a metric space. Let A ⊆ X be a nonempty subset. Recall
DA(x) = inf{d(x, a)|a ∈ A} represents the distance of the point x to the set
A. Show that if A is compact, this infimum is achieved i.e. given x ∈ X,
there is a point a0 ∈ A which is closest to x.
(b) Recall the ε-neighborhood of A, Aε = {x ∈ X|DA(x) < ε} is an open set
containing A. If A is compact, show that if V is an open set containing A,
there exists ε > 0 such that A ⊆ Aε ⊆ V .
(c) Give an example to show that (b) does not hold if A is just assumed to
be closed but is not compact.
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9. Let Matn(R) be topologized by identifying it with Rn2
with the standard

topology as usual.
(a) Show that Matn(Z) the set of n × n matrices with integer entries is a
closed, discrete subspace of Matn(R).
(b) Let G be a compact subgroup of GLn(R). Show that there are only
finitely many matrices in G with all integer entries.
(c) A rational number can always be reduced to the form m

n
where m and

n are relatively prime integers. Such a rational number is said to have de-
nominator bounded by N if |n| ≤ N . Explain why there are only finitely
many matrices in the orthogonal group O(23) with rational entries whose
denominator is bounded by 1020.

10. A topological space is said to be Alexandrov if arbitrary intersections
of open sets are open.
(a) Show that if X is an Alexandrov space, then for every α ∈ X, there is
a minimal open neighborhood M(α) of α. (This means that for any other
open neighborhood U of α, we have M(α) ⊆ U).
(b) Explain why Alexandrov spaces are first countable.
(c) Explain why every finite topological space is Alexandrov.
(d) A pre-order ≤ on a set X is just a reflexive and transitive relation.
(Warning unlike an order we do not have anti-symmetry in general i.e. α ≤ β
and β ≤ α does not imply α = β nor is the order complete i.e. given
α, β, they might be incomparable in the pre-order.) Show that if X is an
Alexandrov space, we can get a pre-order on X by declaring α ≤ β if and
only if M(α) ⊆M(β).
(e) Conversely, if (Y,≤) is a set with a pre-order, a ”negative ray” is any
subset U with the property, u ∈ U, y ∈ Y, y ≤ u =⇒ y ∈ U (Thus a
negative ray is any subset U with the property that anything in the ambient
set Y which is less than an element of U must also be in U). Show that
the collection of negative rays is a topology on Y which is Alexandrov and
M(α) = {y ∈ Y |y ≤ α} is the minimal open set containing α. (Warning this
”pre-order Alexandrov” topology is not the same as the usual order topology
when ≤ is an order).
(f) Show that the set {1, 2, 3, 4, 5, 6} is pre-ordered by the ”divides” relation
i.e. a ≤1 b if an only if b

a
∈ Z (We denote this pre-ordering as ≤1 as it is very

different from the standard ordering ≤). Write down the open sets in the
corresponding Alexandrov topology. Show that this space is path connected
(for this last bit recall that you have checked that the two-point Sierpinski
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space is path connected - use this and concatenate paths).
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