MATH 240H: Homework 11: Assorted Topics and Applications. Due Tuesday, April 23, 11:59PM on gradescope - 1. (a) Show that any set X with the finite complement topology is compact directly from the definitions. - (b) Explain briefly why that \mathbb{R}^1 with the Zariski topology is compact. - (c) Let $\mathbb{Z}_{\omega} = \mathbb{Z}_{+} \cup \{\omega\} = \{1, 2, 3, \dots, \omega\}$ be the ordered set obtained by adjoining a largest element ω to \mathbb{Z}_{+} . Show that \mathbb{Z}_{ω} is compact in its order topology. - 2. Let X be a topological space. Show that a finite union of compact subspaces of X is compact. - 3. Let X be a Hausdorff topological space and A, B compact subspaces with $A \cap B = \emptyset$. Show that there are **disjoint** sets U, V which are **open in** X, such that $A \subseteq U, B \subseteq V$. [Hint: First prove it in the case B is a single point b. Consider each $a \in A$ and find disjoint open sets U_a, V_a such that $a \in U_a, b \in V_a$ and carefully construct U and V from these. When generalizing to the case where B is not a single point, for each b in B, first construct two disjoint open sets, one containing A and one containing b.] - 4. Let (X, d) be a metric space. Given a bounded subset A, the diameter of A, denoted diam(A) is defined by $$diam(A) = \sup\{d(x,y)|x,y \in A\}.$$ - (a) Show that if C is a compact subspace of X, then there exists $x, y \in C$ such that d(x, y) = diam(C). - (b) Give an example of a bounded subset A of \mathbb{R}^2 where there does not exist $x, y \in A$ such that d(x, y) = diam(A). - 5. Let (G, \star) be a topological group. Let A, B be subspaces of G. - (a) If A is closed and B is compact show that $A \star B$ is closed. (Hint: Let $c \in G, c \notin A \star B$. Let $f: G \times B \to G$ be given by $f(x,y) = x \star y^{-1}$ and show that $f^{-1}(G-A)$ is an open neighborhood of the slice $c \times B$. Use the tube lemma to find an open neighborhood W of c such that $W \times B \subseteq f^{-1}(G-A)$. Finish by explaning why your work shows $G A \star B$ is open.) - (b) Let $A = \mathbb{Z}_+$ and $B = \{-n + \frac{1}{n} | n \geq 2, n \in \mathbb{Z}\}$. Show that A, B are closed - subsets of $(\mathbb{R}, +)$ but $A + B = \{a + b | a \in A, b \in B\}$ is not closed. Thus (a) does not hold if B is only required to be closed but not compact. - 6. (a) Let X be a topological space and $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$ be a nested sequence of nonempty closed subspaces. If C_1 is compact explain why $\bigcap_{n=1}^{\infty} C_n$ is nonempty. (Hint: Work within C_1 and consider $U_j = C_1 C_j$ and explain why it is open in C_1 .) - (b) Let Y be a compact (nonempty) topological space and let $f: Y \to Y$ be continuous. Define recursively $Y_0 = Y$ and $Y_n = f(Y_{n-1})$ for $n \in \mathbb{Z}_+$. Show that $Y_0 \supseteq Y_1 \supseteq Y_2 \supseteq \ldots$ is a nested sequence of compact spaces. If Y is assumed in addition to be Hausdorff explain why $Y_\infty = \bigcap_{n=1}^\infty Y_n$ is a nonempty compact subspace of Y and $f: Y_\infty \to Y_\infty$. - (c) Show that $Y_{\infty} = \emptyset$ is possible if compactness is dropped in (b) by considering the example of $f: Y \to Y$, Y = (0,1), $f(t) = \frac{t}{2}$. - (d) Show that $f: Y_{\infty} \to Y_{\infty}$ is surjective when Y is a compact, metric space. (Hint: Fix $b \in Y_{\infty}$ and first explain why there exist $a_k \in Y_k$ such that $f(a_k) = b$. Then explain why there is a subsequence of the a_k that converge to some limit $\alpha \in Y_{\infty}$ and why $f(\alpha) = b$). - 7. (a) Let (Y,d) be a compact metric space and $f: Y \to Y$ be a **shrinking map** i.e., d(f(a), f(b)) < d(a, b) for all $a \neq b \in Y$. Show that f has a unique fixed point in Y, i.e., a unique $y_0 \in Y$ such that $f(y_0) = y_0$. (Hint: Use exercise 6 and then exercise 4 to show that Y_{∞} has diameter zero.) - (b) Give an example of a metric space Y and a shrinking map $f: Y \to Y$ which does not have a fixed point. - 8. (Consulting exercise 4 of homework 7 might be useful when doing this exercise.) - (a) Let (X, d) be a metric space. Let $A \subseteq X$ be a nonempty subset. Recall $D_A(x) = \inf\{d(x, a) | a \in A\}$ represents the distance of the point x to the set A. Show that if A is compact, this infimum is achieved i.e. given $x \in X$, there is a point $a_0 \in A$ which is closest to x. - (b) Recall the ϵ -neighborhood of A, $A^{\epsilon} = \{x \in X | D_A(x) < \epsilon\}$ is an open set containing A. If A is compact, show that if V is an open set containing A, there exists $\epsilon > 0$ such that $A \subset A^{\epsilon} \subset V$. - (c) Give an example to show that (b) does not hold if A is just assumed to be closed but is not compact. - 9. Let $Mat_n(\mathbb{R})$ be topologized by identifying it with \mathbb{R}^{n^2} with the standard topology as usual. - (a) Show that $Mat_n(\mathbb{Z})$ the set of $n \times n$ matrices with integer entries is a closed, discrete subspace of $Mat_n(\mathbb{R})$. - (b) Let G be a compact subgroup of $GL_n(\mathbb{R})$. Show that there are only finitely many matrices in G with all integer entries. - (c) A rational number can always be reduced to the form $\frac{m}{n}$ where m and n are relatively prime integers. Such a rational number is said to have denominator bounded by N if $|n| \leq N$. Explain why there are only finitely many matrices in the orthogonal group O(23) with rational entries whose denominator is bounded by 10^{20} . - 10. A topological space is said to be **Alexandrov** if arbitrary intersections of open sets are open. - (a) Show that if X is an Alexandrov space, then for every $\alpha \in X$, there is a minimal open neighborhood $M(\alpha)$ of α . (This means that for any other open neighborhood U of α , we have $M(\alpha) \subseteq U$). - (b) Explain why Alexandrov spaces are first countable. - (c) Explain why every finite topological space is Alexandrov. - (d) A pre-order \leq on a set X is just a reflexive and transitive relation. (Warning unlike an order we do not have anti-symmetry in general i.e. $\alpha \leq \beta$ and $\beta \leq \alpha$ does not imply $\alpha = \beta$ nor is the order complete i.e. given α, β , they might be incomparable in the pre-order.) Show that if X is an Alexandrov space, we can get a pre-order on X by declaring $\alpha \leq \beta$ if and only if $M(\alpha) \subseteq M(\beta)$. - (e) Conversely, if (Y, \leq) is a set with a pre-order, a "negative ray" is any subset U with the property, $u \in U, y \in Y, y \leq u \implies y \in U$ (Thus a negative ray is any subset U with the property that anything in the ambient set Y which is less than an element of U must also be in U). Show that the collection of negative rays is a topology on Y which is Alexandrov and $M(\alpha) = \{y \in Y | y \leq \alpha\}$ is the minimal open set containing α . (Warning this "pre-order Alexandrov" topology is not the same as the usual order topology when \leq is an order). - (f) Show that the set $\{1, 2, 3, 4, 5, 6\}$ is pre-ordered by the "divides" relation i.e. $a \leq_1 b$ if an only if $\frac{b}{a} \in \mathbb{Z}$ (We denote this pre-ordering as \leq_1 as it is very different from the standard ordering \leq). Write down the open sets in the corresponding Alexandrov topology. Show that this space is path connected (for this last bit recall that you have checked that the two-point Sierpinski space is path connected - use this and concatenate paths).