Exercises

- 1. Show that Q is countably infinite.
- 2. Show that the maps f and g of Examples 1 and 2 are bijections.
- 3. Let X be the two-element set $\{0, 1\}$. Show there is a bijective correspondence between the set $\mathcal{P}(\mathbb{Z}_+)$ and the cartesian product X^{ω} .
- **4.** (a) A real number x is said to be *algebraic* (over the rationals) if it satisfies some polynomial equation of positive degree

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

with rational coefficients a_i . Assuming that each polynomial equation has only finitely many roots, show that the set of algebraic numbers is countable.

- (b) A real number is said to be transcendental if it is not algebraic. Assuming the reals are uncountable, show that the transcendental numbers are uncountable. (It is a somewhat surprising fact that only two transcendental numbers are familiar to us: e and π . Even proving these two numbers transcendental is highly nontrivial.) It tol. (a) gravitating notional sviticog a stall
- 5. Determine, for each of the following sets, whether or not it is countable. Justify Show that there is no function h: 2.4. - Estatalying the savents
 - (a) The set A of all functions $f:\{0,1\}\to\mathbb{Z}_+$.
 - (b) The set B_n of all functions $f:\{1,\ldots,n\}\to\mathbb{Z}_+$.
 - (c) The set $C = \bigcup_{n \in \mathbb{Z}_+} B_n$.
 - (d) The set D of all functions $f: \mathbb{Z}_+ \to \mathbb{Z}_+$.
 - (e) The set E of all functions $f: \mathbb{Z}_+ \to \{0, 1\}$.
 - (f) The set F of all functions $f: \mathbb{Z}_+ \to \{0, 1\}$ that are "eventually zero." [We say that f is eventually zero if there is a positive integer N such that f(n) = 0 for all $n \ge N$.]
- (g) The set G of all functions $f: \mathbb{Z}_+ \to \mathbb{Z}_+$ that are eventually 1.
- (h) The set H of all functions $f: \mathbb{Z}_+ \to \mathbb{Z}_+$ that are eventually constant.
 - (i) The set I of all two-element subsets of \mathbb{Z}_+ .
 - (i) The set J of all finite subsets of \mathbb{Z}_+ .
- 6. We say that two sets A and B have the same cardinality if there is a bijection of A with B.
 - (a) Show that if $B \subset A$ and if there is an injection $A \subset A$ and if there is an injection $A \subset A$

We small prove that there exists a
$$\mathcal{A} \longleftrightarrow A$$
: $f_0 : f_0 : h : \mathbb{Z}_+ \longrightarrow \mathbb{C}$ satisfying this recursion

then A and B have the same cardinality. [Hint: Define $A_1 = A$, $B_1 = B$, and for n > 1, $A_n = f(A_{n-1})$ and $B_n = f(B_{n-1})$. (Recursive definition again!) Note that $A_1 \supset B_1 \supset A_2 \supset B_2 \supset A_3 \supset \cdots$. Define a bijection $h: A \rightarrow B$ by the rule

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_n - B_n \text{ for some } n, \\ x & \text{otherwise.} \end{cases}$$

- (b) Theorem (Schroeder-Bernstein theorem). If there are injections $f: A \rightarrow$ C and $g: C \rightarrow A$, then A and C have the same cardinality.
- 7. Show that the sets D and E of Exercise 5 have the same cardinality.
- **8.** Let X denote the two-element set $\{0, 1\}$; let B be the set of countable subsets of X^{ω} . Show that X^{ω} and \mathcal{B} have the same cardinality.
- 9. (a) The formula

The formula
$$h(1) = 1, \qquad \text{and a position of a basis is a radiation of a basis in the property of the propert$$

vaccined equation has delivers is not one to which the principle of recursive definition applies. Show that nevertheless there does exist a function $h: \mathbb{Z}_+ \to \mathbb{R}$ satisfying this formula. [Hint: Reformulate (*) so that the principle will apply and require h to be able . It is a somewhat surprising fact that only two tracks [. svitizoquanday.

- (b) Show that the formula (*) of part (a) does not determine h uniquely. [Hint: If h is a positive function satisfying (*), let f(i) = h(i) for $i \neq 3$, and let f(3) = -h(3).] are radiant we see an involted and to the rot primaries of \tilde{c}
 - (c) Show that there is no function $h: \mathbb{Z}_+ \to \mathbb{R}$ satisfying the formula

$$h(1) = 1,$$
 (10) Yearnize of the A let still (b) $h(2) = 2,$ (c) $h(n) = [h(n+1)]^2 + [h(n-1)]^2$ for $n \ge 2$.

(c) The set E of all functions f : Z -> (0, 1)

*§8 The Principle of Recursive Definition

Before considering the general form of the principle of recursive definition, let us first prove it in a specific case, that of Lemma 7.2. That should make the underlying idea of the proof much clearer when we consider the general case.

So, given the infinite subset C of \mathbb{Z}_+ , let us consider the following recursion formula for a function $h: \mathbb{Z}_+ \to C$: 6. We say that two sets A and P have the same

(*)
$$h(1) = \text{smallest element of } C,$$

$$h(i) = \text{smallest element of } [C - h(\{1, ..., i-1\})] \quad \text{for } i > 1.$$

We shall prove that there exists a unique function $h: \mathbb{Z}_+ \to C$ satisfying this recursion formula.

The first step is to prove that there exist functions defined on sections $\{1, \ldots, n\}$ of \mathbb{Z}_+ that satisfy (*):

Lemma 8.1. Given $n \in \mathbb{Z}_+$, there exists a function

$$f:\{1,\ldots,n\}\to C$$

that satisfies (*) for all i in its domain.