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is not empty.]

12. Let p : X — Y be a closed continuous surjective map such that P~y "
compact, for each y € Y. (Such a map is called a perfect map.) Show tha it
is compact, then X is compact. [Hint: If U is an open set.contzfumng p~! Iy},
there is a neighborhood W of y such that p~!(W) is contained in U]

13. Let G be a topological group. :

(a) Let A and B be subspaces of G. If A is closed and B is compact, show 4. p
is closed. [Hint: If c is not in A - B, find a neighborhood W of ¢ such thy,
W B~ is disjoint from A.] ;

(b) Let H be a subgroup of G; let p : G — G/H be the quotient map. If A i
compact, show that p is a closed map.

(c) Let H be a compact subgroup of G. Show that if G/H is compact, then
is compact.

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line: we shall prove that every closed inter-
val in R is compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization
of all compact subspaces of R”, and a proof of the uncountability of the set of real
numbers.

It turns out that in order to prove every closed interval in R is compact, we need
only one of the order properties of the real line—the least upper bound property. We

shall prove the theorem using only this hypothesis; then it will apply not only to the
real line, but to well-ordered sets and other ordered sets as well.

Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact,

Proof. Step 1. Givena < b, let A be a covering of [4, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of 4 covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point'y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of .4,

If x has an immediate successor in X, let Y be this immediate successor. Then
[, y] consists of the two points x and y, so that it capn be covered by at most (w0
elements of A. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢):

for some c in [a, b]. Choose a point Yy in (x, ¢); then the interval [x, y] is covered by
the single element A of A.
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Step 2. Let C be the set of all poj
: pomts y > a of [a, b] such that the i
can be covered by finitely many elements of 4. Applying Step 1 to fh;nzzl:;ai [:’ Z]

we see that there exists at least one such .
, S0
bound of the set C; thena < ¢ < b, Y, 80 Cis not empty. Let c be the least upper

Step 3. We sl}ow that ¢ belongs to C; that is, we show that the interval [a, ¢] can
bf: cover.ed by ﬁn.ltely many elements of 4. Choose an element A of 4 contai’ning 0y
smge A is open, it contains an interval of the form (d, c] for some d in [a, b]. If ¢ i;
not in C, there must be a point z of C lying in the interval , c¢), because c;therwise d
Yvould be a smaller upper bound on C than c. See Figure 27.1. Since z is in C, the
¥nterva1‘ [a, z] can be covered by finitely many, say n, elements of . Now [z, ¢] lies
in the single element A of A, hence [a, ¢] = [a, z] U [z, c] can be covered by n + 1
elements of ». Thus c is in C, contrary to assumption.

o ' yory
¢ \ | : )
{ TR § f: { o9
a d a b
Figure 27.1 Figure 27.2

Step 4. Finally, we show that ¢ = b, and our theorem is proved. Suppose that
¢ < b. Applying Step 1 to the case x = ¢, We conclude that there exists a point y > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of 4.
See Figure 27.2. We proved in Step 3 that ¢ isin C, so [a, c] can be covered by finitely
many elements of +. Therefore, the interval

[a,y] = [a,clU e, Y]

can also be covered by finitely many elements of 4. This means that y is in C, con-
tradicting the fact that ¢ is an upper bound on C. e

Corollary 27.2. Every closed interval in R is compact.

n.
Now we characterize the compact subspaces of R":

of R" is compact if and only if it is closed and is
d or the square metric p.
the inequalities

Theorem 27.3. A subspace A
bounded in the euclidean metric

Proof. 1t will suffice to consider only the metric p;

p(x,y) £d@ ) = Jnp(x,y)

i i if it i ded under p.
A sodtd l’i‘;nd og;y'liflétolrirt:logg.; it is cl:;ed. Consider the
Suppose that A is compact. ‘Lhefh

collection of open sets
{Bp(09 m)|mée€ Z+},
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Definition. Let (X, d) be a metric s

pace; let A be a
1 € X, we define the distance from nonempty subset of X. For each

X to A by the equation
d(x, A) = inf{d(x,a) |a € A}.

It i§ easy to show that for fixed A, the function d (x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x,A) <d(x,a) <d(x,y) +d(y,a),

for éaqh a € A. It follows that
d(x,A) —d(x,y) <infd(y,a) = d(y, A),
sb that '
d(x,A) —d(y, A) <d(x,y).

The same inequality holds with x and y interchanged; continuity of the function

d(x, A) follows.
Now we introduce the notion of Lebesgue number. Recall that the diameter of a

bounded subset A of a metric space (X, d) is the number

sup{d (a1, a2) | a1, a2 € A}.

ing of the
Lemma 27.5 (The Lebesgue number lemma). Let 4 be an open covering o
metric space (§( d). If X is compact, there is 2 > 0 such that for each subset of X

having diameter less than 8, there exists an element of A containing it.

The number 8 is called a Lebesgue number for the covering A.
Proof. Let 4 be an open covering of X. If X itself is an element ;)f A, th?,lA any
positive number is a Lebesgue number for - So assume X is not a; e ;ment (;1 A.
Gl it subsollection LAT, s s An) OF o WAl £O¥CE & ;):heac l,B 58
Ci = X — A;, and define f : X — R by letting f(x) be the average of the numbers

d(x, C;). That is,

1 ¢ ;
f@&x) = ;;d(x'c‘)'

We show that f(x) > 0 forall x. Givenx € X, chg(?)se >l 20 ;l;atth Ztef?;j 'lz"h:r/l :'hoose €
50 the e-neighborhood of x lies in Ai- Then d(x, Ci) = €
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Figure 27.3

Let x, = f(n). Apply Step 1 to the nonempty open set U = X to choose a
nonempty open set Vi C X such that V; does not contain x;. In general, given V,_1
open and nonempty, choose Vj, to be a nonempty open set such that V,, C V-1 and Vi
does not contain x,. Consider the nested sequence

V]DV2D

of nonempty closed sets of X. Because X is compact, there is a point x € [ Vi, by
Theorem 26.9. Now x cannot equal x, for any n, since x belongs to V, and x, does
not. -

Corollary 27.8. Every closed interval in R is uncountable.

‘Exercises

1. Prove that if X is an ordered set in which every closed interval is compact, then X

has the least upper bound property.

2. Let X be a metric space with metric d;let A C X be nonempty.
(a) Show that d(x, A) = 0if and only if x € A.
(b) Show that if A is compact, d(x, A) = d(x, a) for some a € A.
(c) Define the e-neighborhood of A in X to be the set

UA,€) ={x] d(x,A) < €}.

ion of the open balls Bg(a, €) fora &€ A.
that U (A, €) equals the union 0 1(c
(d) i};z:]meathat(A is cocrlnpact; let U be an op;n set containing A. Show that
i i inedin U.
_neighborhood of A 18 contained It
(€) SS(I)II(I)]\(:/ Ethlc: rfsult in (d) need not hold if A is closed but not compact.

3. Recall that R denotes R in the K -topologg. bbby
(2) Show that [0, 1] is not compact a3 a subsp
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(b) Show that Ry is connected. [Hint: (—00,0) and (0, 00) inherit their ugyy|
topologies as subspaces of Rx.]
(¢) Show that Ry is not path connected. o
4. Show that a connected metric space having more than one point is uncountable.
5. Let X be a compact Hausdorff space; let {A,} be a countable collection_of closed
sets of X. Show that if each set A, has empty interior in X, then the union | 4,
has empty interior in X. [Hint: Imitate the proof of Theorem 27.7.]
This is a special case of the Baire category theorem, which we shall study in
Chapter 8. ;
6. Let Ao be the closed interval [0, 1] in R. Let Ay be the set obtained from A by
deleting its “middle third” (1, 3). Let A2 be the set obtained from A; by deleting
its “middle thirds” (3, %) and (3, §). In general, define A, by the equation

- ® 143k 243k
An=An—1"U< 3n ] 3n )'
k=0

The intersection

C.='[) A3

neZy

is called the Cantor set, it is a subspace of [0, 1].

(a) Show that C is totally disconnected.

(b) Show that C is compact.

(c) Show that each set A, is a union of finitely many disjoint closed intervals of
length 1/3"; and show that the end points of these intervals lie in C.

(d) Show that C has no isolated points.

(e) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides

i with compactness for
metrizable spaces.

Definition. A space X is said to be limit point compa

BROIRE) ¥ ct if every infinite subset of X
has a limit point.

In some ways this property is more natural and int
In the early days of topology, it was given the name
covering formulation was called “bicompactness.”
shifted to-apply to the open covering definition, lea

uitive than that of compactness:
“compactness,” while the open

Later, the word “compact” Was
ving this one to search for a new



