MTH 236, Spring 2024 - Homework 8

Due on Friday, March 22 at 11:59pm on gradescope

1. Let G be a group and let N be a normal subgroup of G. Are the following statements true or false? Justify your answers, with examples where necessary.
(a) If G is finite, then G / N is finite.
(b) If G / N is finite, then G is finite.
(c) If G is abelian, then G / N is abelian.
(d) If G / N is abelian, then G is abelian.
2. Show that for $n \geq 2, S_{n}$ is not a normal subgroup of S_{n+1}. (Hint: show that there is an element $\sigma \in S_{n}$ and some $\tau \in S_{n+1}$ such that $i_{\tau}(\sigma)=\tau \sigma \tau^{-1}$ is not in S_{n}. Try taking σ to be a cycle of length n, and τ to be a carefully chosen transposition.)
3. Let G be a group and let $K, H \leq G$. We say that H is conjugate to K if there exists $g \in G$ such that $g H^{-1}=K$.
(a) Prove that conjugacy is an equivalence relation on the set of all subgroups of G.
(b) If H is normal in G, what is the equivalence class of H under this relation?
(c) What are the equivalence classes of this relation for the set of subgroups of S_{3} ? (There are precisely 6 subgroups of S_{3}.)
4. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Show that $\phi[G]$ is abelian if and only if $x y x^{-1} y^{-1} \in$ $\operatorname{Ker}(\phi)$ for all $x, y \in G$.
5. Let G be a finite group and let N be a normal subgroup of G of index r (so $|G / N|=r$.) Prove that $x^{r} \in N$ for every $x \in G$.
6. Let $G=\mathrm{GL}_{2}(\mathbb{R})$ and let $H=\{A \in G \mid \operatorname{det}(A)=1\}$. (This group is called $\mathrm{SL}_{2}(\mathbb{R})$, the 2-dimensional special linear group.)
(a) Show that H is normal in G.
(b) Show that G / H is isomorphic to \mathbb{R}^{*}.
7. Let F be the group of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ under addition.
(a) Let $H \leq F$ be the subgroup of all functions f such that $f(0)=0$. What group is F / H isomorphic to? (Hint: what is H the kernel of?)
(b) Let $C \leq F$ be the subgroup of constant functions. Show that F / C is isomorphic to the subgroup H from part (a).
(c) Let $K \leq F$ be the subgroup of all functions f that are continuous everywhere. Is there an element of F / K of order 2 ? Why or why not?
8. Let G be the group of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b$ where $a \in \mathbb{R}^{*}$ and $b \in \mathbb{R}$, under the operation of function composition. (You should convince yourself that G is a group, but you don't have to show this.)
(a) Let $H=\{f \in G \mid f(x)=a x\}$. Show that H is not a normal subgroup of G.
(b) Let $K=\{f \in G \mid f(x)=x+b\}$. Show that K is a normal subgroup of G.
(c) Show that G / K is isomorphic to \mathbb{R}^{*}.
9. (a) Let $G=\mathbb{Z}_{18} \times \mathbb{Z}_{24}$. Find the orders of the groups $G /\langle(1,1)\rangle$ and $G /(\langle 12\rangle \times\langle 10\rangle)$.
(b) Find the orders of $(1,7)+\langle(1,1)\rangle$ in $\mathbb{Z}_{6} \times \mathbb{Z}_{9} /\langle(1,1)\rangle$ and $(2,1)+\langle(2,3)\rangle$ in $\mathbb{Z}_{6} \times$ $\mathbb{Z}_{9} /\langle(2,3)\rangle$.
(c) Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let $H_{1}=\langle(2,1)\rangle$ and $H_{2}=\langle(2,0)\rangle$. Note that H_{1} and H_{2} are isomorphic (they are groups of order 2). The groups G / H_{1} and G / H_{2} are order 4, and so are isomorphic to either \mathbb{Z}_{4} or the Klein 4-group V. Compute which one each is isomorphic to.
