MTH 236, Spring 2024 - Homework 7

Due on Friday, March 8 at 11:59pm on gradescope, but may be handed in through Friday, March 15th without penalty

1. True or false? Provide brief justifications for your answers.
(a) For any groups A and $B, A \times B$ is isomorphic to $B \times A$.
(b) $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ has an element of order $m n$ only when m and n are relatively prime.
(c) $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ has order $m n$ only when m and n are relatively prime.
(d) The Klein 4 group is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(e) Both $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$ are cyclic.
(f) Every abelian group of square free order is cyclic. (We say a number is square free if it is not divisible by p^{2} for any prime p.)
(g) Every abelian group of order a power of a prime is cyclic.
(h) If 7 divides the order of a finite abelian group G, then G contains a subgroup of order 7 .
(i) If 7 divides the order of a finite abelian group G, then G contains a cyclic subgroup of order 7 .
(j) If 35 divides the order of a finite abelian group G, then G contains a cyclic subgroup of order 35 .
(k) If 36 divides the order of a finite abelian group G, then G contains a cyclic subgroup of order 36 .
(l) $\mathbb{Z}_{10} \times \mathbb{Z}_{12}$ is isomorphic to S_{5}.
(m) $S_{3} \times S_{4}$ is not isomorphic to a subgroup of S_{6}.
(n) Let G and G^{\prime} be arbitrary groups. There exists a homomorphism $\theta: G \rightarrow G^{\prime}$.
(o) The kernel of every homomorphism is non-empty (i.e. not the empty set).
(p) There is a non-trivial homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{7}$.
(q) There is a non-trivial homomorphism $\psi: \mathbb{Z}_{7} \rightarrow \mathbb{Z}$.
(r) There is a non-trivial homomorphism $\chi: \mathbb{Z}_{7} \rightarrow S_{5}$.
2. Let G be a group with subgroups H and K. Suppose that $H \cap K=\{e\}$, that every $g \in G$ can be written as $g=h k$ for some $h \in H$ and $k \in K$, and that $h k=k h$ for every $h \in H$ and $k \in K$. Show that G is isomorphic to $H \times K$.
3. (a) For each of the following you are given a finite abelian group G and an element $a \in G$. Find the order of a in G.
i. $(2,2,2)$ in $\mathbb{Z}_{3} \times \mathbb{Z}_{10} \times \mathbb{Z}_{5}$.
ii. $(2,5,9)$ in $\mathbb{Z}_{3} \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}$.
(b) What is the largest order of an element of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$? How about $\mathbb{Z}_{12} \times \mathbb{Z}_{9}$? Justify both answers briefly.
(c) Does the group $\mathbb{Z}_{12} \times \mathbb{Z} \times \mathbb{Z}_{5}$ have any nontrivial elements of finite order? Justify your answer.
(d) How many subgroups of order 2 does $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{6}$ have? Justify your answer.
(e) Find all abelian groups of order $36,40,36^{2}$, and 72 (up to isomorphism).
(f) How many non-isomorphic abelian groups are there of order 36^{3} and of order 1700 ?
(g) Let p be a prime number. Find all abelian groups (up to isomorphism) of order p^{4}.
4. (a) Note that $\mathbb{Z}_{3} \times \mathbb{Z}_{30} \times \mathbb{Z}_{20}$ and $\mathbb{Z}_{6} \times Z_{6} \times \mathbb{Z}_{50}$ have the same number of elements. Are they isomorphic? Why or why not?
(b) Answer the same question for $\mathbb{Z}_{12} \times \mathbb{Z}_{70} \times \mathbb{Z}_{10}$ and $\mathbb{Z}_{30} \times \mathbb{Z}_{20} \times \mathbb{Z}_{14}$.
5. Let G be a group. Define the center of G to be

$$
\mathbf{Z}(G)=\{x \in G \mid x g=g x \text { for all } g \in G\},
$$

that is, the set of all elements of G that commute with every element of G. Observe that G is abelian if and only if $\mathbf{Z}(G)=G$.
(a) Show that $\mathbf{Z}(G)$ is a subgroup of G.
(b) Show that $\mathbf{Z}(G)$ is precisely the set of elements $x \in G$ such that conjugation $c_{x}: G \rightarrow$ G is the identity function.
(c) If $\phi: G \rightarrow H$ is an isomorphism, show that $\phi[\mathbf{Z}(G)]=\mathbf{Z}(H)$.
(d) S_{n} is nonabelian for $n \geq 3$. Now show that if $n \geq 3$, then $\mathbf{Z}\left(S_{n}\right)$ is the trivial subgroup of S_{n}. (Hint: if σ is a single cycle, it is easy to find some τ that does not commute with σ. For an arbitrary σ, write it as a product of cycles, and use the fact that disjoint cycles commute.)
(e) Let G be a group and $H \leq G$ be any subgroup. Is it always true that $\mathbf{Z}(H)=$ $\mathbf{Z}(G) \cap H$? Either prove this or give a counterexample.
6. A subgroup $H \leq G$ is called normal if the set of left cosets of H is the same as the set of right cosets of H.
(a) Show that if H is contained in $\mathbf{Z}(G)$ (the center of G), then H is normal. (So if G is abelian, every subgroup is normal.)
(b) Give an example of a group G and a subgroup H that is not normal.
(c) Show that for any group G, if $|G: H|=2$, then H is normal.
7. For each of the following you are given two groups G and G^{\prime} and map $\phi: G \mapsto G^{\prime}$. Determine (with proof) whether ϕ is a homomorphism. If it is, describe the kernel of ϕ. (a) $\phi: \mathbb{R} \rightarrow \mathbb{Z}$, where $\phi(x)$ is the smallest integer greater than or equal to x. (This map is often called the ceiling function.)
(b) $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}$, where $\phi(x)=\ln (x)$. (\mathbb{R}^{+}is a group under multiplication and \mathbb{R} is a group under addition.)
(c) Let $M_{n}(\mathbb{Q})$ be the additive group of $n \times n$ matrices with values in \mathbb{Q}, and let $\mathbb{Q}=\langle\mathbb{Q},+\rangle$. Let $\phi: M_{n}(\mathbb{Q}) \rightarrow \mathbb{Q}$ be given by $\phi(A)=\operatorname{det}(A)$.
(d) $\phi: M_{n}(\mathbb{Q}) \rightarrow \mathbb{Q}$ given by $\phi(A)=\operatorname{tr}(A)$. (Recall that $\operatorname{tr}(A)$ denotes the trace of A, i.e. the sum of its diagonal entries.)
8. For each of the following you are given two groups G and G^{\prime} and a homomorphism $\theta: G \mapsto G^{\prime}$. Determine the indicated quantities.
(a) Find the kernel of θ, and also find $\theta((-5,3))$, if you know that $\theta: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies $\theta((1,0))=4$ and $\theta((0,1))=6$.
(b) Find the kernel of θ, and also find $\theta((-1,5))$ and $\theta((3,-1))$, if you know that θ : $\mathbb{Z} \times \mathbb{Z} \rightarrow S_{9}$ satisfies $\theta((1,0))=(1,2)(3,4)$ and $\theta((0,1))=(5,6,7,8,9)$.
9. Let G and G^{\prime} be finite groups and $\theta: G \mapsto G^{\prime}$ a homomorphism.
(a) Suppose that $\left|G^{\prime}\right|$ is prime. Show that θ must either be trivial or surjective.
(b) Suppose that $|G|$ is prime. Show that θ must either be trivial or injective.
(c) Suppose that $|G|$ and $\left|G^{\prime}\right|$ are the same prime number. Show that θ is either trivial or an isomorphism.
(d) Suppose that $|G|$ and $\left|G^{\prime}\right|$ are relatively prime. Show that θ must be trivial.

