MTH 236, Spring 2024 - Homework 6

Due on Friday, March 1 at 11:59pm on gradescope

Question 1. Let $S_{\mathbb{Z}}$ be the group of all permutations of \mathbb{Z}.
(a) Prove that every finite group G is isomorphic to a subgroup of $S_{\mathbb{Z}}$. (Hint: this proof should be very short if you appeal to the correct theorem...)
(b) Find a subgroup of $S_{\mathbb{Z}}$ that is isomorphic to \mathbb{Z}. (This shows how ridiculously large $S_{\mathbb{Z}}$ is; it contains every finite group as a subgroup, but has even more subgroups than that.)
(c) Let $H=\left\{\sigma \in S_{\mathbb{Z}} \mid \sigma(x)=x\right.$ for all but finitely many $\left.x \in \mathbb{Z}\right\}$, that is, H consists of the set of permutations that move only finitely many elements. Show that H is a subgroup of $S_{\mathbb{Z}}$.
(d) Find all of the orbits of $\sigma, \tau \in S_{\mathbb{Z}}$ where $\sigma(x)=2-x$ and $\tau(x)=x+3$.

Question 2. Let $\sigma \in S_{n}$ be written as $\sigma=\mu_{1} \mu_{2} \ldots \mu_{k}$ where $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ are disjoint cycles of lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. Show that the order of σ is the LCM (least common multiple) of $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. (This is the smallest positive integer m such that $\ell_{1}, \ldots, \ell_{k}$ are all divisors of m.)

Question 3. In the proof of Cayley's Theorem we used the left multiplication permutation $\lambda_{x}: G \rightarrow G$, defined by $\lambda_{x}(a)=x a$. Another way for elements to permute the group they belong to is by conjugation: define $c_{x}: G \rightarrow G$ by $c_{x}(g)=x g x^{-1}$.
(a) Show that $c_{x} \in S_{G}$ for every $x \in G$.
(b) Unfortunately, this permutation cannot be used to prove Cayley's Theorem: define the map $\phi: G \rightarrow S_{G}$ by $\phi(x)=c_{x}$. Show that ϕ is a homomorphism, but give an example to show that ϕ is not necessarily injective.

Question 4. Let $\phi: G \rightarrow H$ be a homomorphism. The kernel of ϕ is

$$
\operatorname{ker} \phi=\left\{x \in G \mid \phi(x)=e_{H}\right\}
$$

where e_{H} is the identity of the group H.
(a) Show that $\operatorname{ker} \phi$ is a subgroup of G.
(b) Show that if $g \in \operatorname{ker} \phi$, then $c_{x}(g)=x g x^{-1} \in \operatorname{ker} \phi$ for every $x \in G$.
(c) Show that ϕ is injective if and only if $\operatorname{ker} \phi$ is the trivial subgroup of G.

Question 5. Let G be a group. An automorphism of G is an isomorphism $\phi: G \rightarrow G$. The automorphism group $\operatorname{Aut}(G)$ is the group of all automorphisms of G under the operation of function composition.
(a) Show that $\operatorname{Aut}(G)$ is a subgroup of S_{G} (in particular, this shows that $\operatorname{Aut}(G)$ is a group).
(b) Show that for every $x \in G$, the function c_{x} is an automorphism of G, where c_{x} is defined as in Question 5. (You already did part of this in 5(a).)
(c) Show that if $G=\langle a\rangle$ is cyclic and $\phi \in \operatorname{Aut}(G)$, then $\phi(a)$ is a generator of G.
(d) Use part (c) to compute $\operatorname{Aut}(G)$ for $G=\mathbb{Z}_{4}$ and $G=\mathbb{Z}_{5}$.

