MTH 236, Spring 2024 - Homework 5

Due on Sunday, February 25 at 11:59pm on gradescope

For any group G, recall that the trivial subgroup of G is the subgroup containing only the identity, and a proper subgroup of G is any subgroup other than G itself.

Question 1. (a) Suppose that a is an element of some group and the order of a is 105 . Find the orders of each of the following elements: a^{25}, a^{44}, a^{70}.
(b) Suppose that $G=\langle a\rangle$ is a cyclic group of order 6000. Find all of the elements of G that have order 6 .
(c) Suppose that a cyclic group $G=\langle a\rangle$ has exactly one nontrivial proper subgroup and that subgroup has order 11 . What is the order of G ?
(d) Let p and q be distinct primes. How many subgroups does a cyclic group of order $p q$ have? How many generators does it have?
(e) Let p be prime and let $n \geq 1$. How many subgroups does a cyclic group of order p^{n} have? How many generators does it have?

Question 2. Prove that a group G equals the union of all of its proper subgroups if and only if G is not cyclic.

Question 3. It is obvious that if a group G is abelian, then all of its proper subgroups are abelian (you don't have to prove this). Show that the converse to this fails: there exists a group G with all proper subgroups abelian such that G itself is not abelian.

Question 4. Show that the group S_{3} is generated by two of its elements. That is, find two elements $\sigma, \tau \in S_{3}$ such that $S_{3}=\langle\sigma, \tau\rangle$, then explicitly write every element of S_{3} as some product of powers of σ and τ.

Question 5. Let A be a set and let $G=S_{A}$ be the group of all permutations of A. Let $x \in A$ and define

$$
G_{x}=\{\sigma \in G \mid \sigma(x)=x\} .
$$

Prove that G_{x} is a subgroup of G.

Question 6. Find a subgroup of S_{4} that is isomorphic to the Klein 4-group V.

Question 7. The following six matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

form a group under matrix multiplication. Give an isomorphism between the matrix group and a familiar group. You do not have to prove that your map is an isomorphism.
Hint: Try seeing what effect each matrix has on $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
Question 8. The following permutations are elements of S_{5}.

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 4 & 5
\end{array}\right), \quad \tau=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 4 & 5 & 3
\end{array}\right)
$$

Show that $H=\langle\sigma, \tau\rangle$ is a cyclic group of order 6. Find a generator for H.

Question 9. (a) Show that S_{n} is nonabelian for $n \geq 3$.
(b) Let H be any subgroup of S_{n}. Show that either all of the elements of H are even or exactly half of the elements of H are even. (Hint: mimic the proof that $\left|A_{n}\right|=\left|S_{n}\right| / 2$.)

Question 10. The following permutation is an element of S_{10}.

$$
\sigma=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 1 & 4 & 5 & 3 & 7 & 8 & 9 & 10 & 6
\end{array}\right)
$$

(a) Find all the orbits of σ and write σ as a product of disjoint cycles.
(b) Is σ even or odd? (Of course, justify your answer.)
(c) What is the order of σ ?

