MTH 236, Spring 2024 - Homework 5

Due on Sunday, February 25 at 11:59pm on gradescope

For any group G, recall that the *trivial subgroup* of G is the subgroup containing only the identity, and a *proper subgroup* of G is any subgroup other than G itself.

Question 1. (a) Suppose that a is an element of some group and the order of a is 105. Find the orders of each of the following elements: a^{25}, a^{44}, a^{70} .

(b) Suppose that $G = \langle a \rangle$ is a cyclic group of order 6000. Find all of the elements of G that have order 6.

(c) Suppose that a cyclic group $G = \langle a \rangle$ has exactly one nontrivial proper subgroup and that subgroup has order 11. What is the order of G?

(d) Let p and q be *distinct* primes. How many subgroups does a cyclic group of order pq have? How many generators does it have?

(e) Let p be prime and let $n \ge 1$. How many subgroups does a cyclic group of order p^n have? How many generators does it have?

Question 2. Prove that a group G equals the union of all of its proper subgroups if and only if G is *not* cyclic.

Question 3. It is obvious that if a group G is abelian, then all of its proper subgroups are abelian (you don't have to prove this). Show that the converse to this fails: there exists a group G with all proper subgroups abelian such that G itself is not abelian.

Question 4. Show that the group S_3 is generated by two of its elements. That is, find two elements $\sigma, \tau \in S_3$ such that $S_3 = \langle \sigma, \tau \rangle$, then explicitly write every element of S_3 as some product of powers of σ and τ .

Question 5. Let A be a set and let $G = S_A$ be the group of all permutations of A. Let $x \in A$ and define

$$G_x = \{ \sigma \in G \mid \sigma(x) = x \}.$$

Prove that G_x is a subgroup of G.

Question 6. Find a subgroup of S_4 that is isomorphic to the Klein 4-group V.

Question 7. The following six matrices

1	0	0		0	1	0		0	0	1		1	0	0		0	0	1		0	1	0	
0	1	0	,	0	0	1	,	1	0	0	,	0	0	1	,	0	1	0	,	1	0	0 1	
0	0	1		1	0	0		0	1	0		0	1	0		1	0	0		0	0	1	

form a group under matrix multiplication. Give an isomorphism between the matrix group and a familiar group. You do not have to prove that your map is an isomorphism.

Hint: Try seeing what effect each matrix has on $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Question 8. The following permutations are elements of S_5 .

$$\sigma = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{array}\right) , \quad \tau = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 5 & 3 \end{array}\right)$$

Show that $H = \langle \sigma, \tau \rangle$ is a cyclic group of order 6. Find a generator for H.

Question 9. (a) Show that S_n is nonabelian for $n \ge 3$.

(b) Let H be any subgroup of S_n . Show that either all of the elements of H are even or exactly half of the elements of H are even. (Hint: mimic the proof that $|A_n| = |S_n|/2$.)

Question 10. The following permutation is an element of S_{10} .

(a) Find all the orbits of σ and write σ as a product of disjoint cycles.

(b) Is σ even or odd? (Of course, justify your answer.)

(c) What is the order of σ ?