MTH 236, Spring 2024 - Homework 4

Due on Friday, February 16 at 11:59pm on gradescope

Question 1. Recall that $\mathrm{GL}_{2}(\mathbb{R})$ is the group of all invertible 2×2 real matrices (under multiplication).
(a) Let $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Find all elements of the cyclic group $\langle A\rangle$ in $\mathrm{GL}_{2}(\mathbb{R})$.
(b) Let $z=\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Find all elements of the cyclic group $\langle z\rangle$ in $\mathbb{C}^{*}=\left\langle\mathbb{C}^{*}, \cdot\right\rangle$.

Question 2. Let $k \in \mathbb{Z}_{+}$and let $\theta=\frac{2 \pi}{k}$, so that the complex number $z=e^{i \theta}=\cos \theta+i \sin \theta$ is a generator of the cyclic group U_{k}. Let $f: U_{k} \rightarrow M_{2,2}(\mathbb{R})$ be defined for all $n \geq 0$ by

$$
f\left(z^{n}\right)=\left[\begin{array}{cc}
\cos (n \theta) & \sin (n \theta) \\
-\sin (n \theta) & \cos (n \theta)
\end{array}\right] .
$$

Observe that f is defined on all of U_{k}, because every element of U_{k} is a power of z.
(a) Prove that f is well-defined, that is, if $z^{n}=z^{m}$, then $f\left(z^{n}\right)=f\left(z^{m}\right)$. (If this were not true, then f would not actually be a function!)
(b) Prove that the image (or the range) H of f is a subgroup of $\mathrm{GL}_{2}(\mathbb{R}$). (In order to do this, first you have to show that H is a subset of $\mathrm{GL}_{2}(\mathbb{R})$. In showing that H is a subgroup, some elementary trig identities will be useful.)
(c) Prove that f is an isomorphism from U_{k} to H.

Question 3. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$. Show that $\langle A\rangle$ is isomorphic to $\mathbb{Z}=\langle\mathbb{Z},+\rangle$.
Question 4. Let G be a group and let H be a subset of G. Consider the relation \sim defined on G by $a \sim b$ if $a^{-1} b \in H$. In HW 3, you showed that if H is a subgroup of G, then \sim is an equivalence relation. Now show instead that if \sim is an equivalence relation, then H must be a subgroup of G.

Question 5. In HW 1 we introduced the "modulo n " equivalence relation on \mathbb{Z} for the integer $n \geq 2$, defined by $x \sim y$ if $x-y=n q$ for some $q \in \mathbb{Z}$. Recall that $\bar{x}=\{y \in \mathbb{Z}: y \sim x\}$.
(1) Use the division algorithm to show that there are exactly n equivalence classes under \sim, which are $\overline{0}, \overline{1}, \ldots, \overline{n-1}$.
(2) Let S be the set of equivalence classes of \sim. Define a binary operation + on S in the following way: to add the classes C_{1} and C_{2}, pick any $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$, and define

$$
C_{1}+C_{2}=\overline{x_{1}+x_{2}} .
$$

Show that $C_{1}+C_{2}$ always gives the same equivalence class as output no matter which $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$ are chosen. (In other words, + is a well-defined operation on S.)
(3) Prove that $\langle S,+\rangle$ is a cyclic group of order n. (First, show it is a group!)

Question 6. True or false? Justify your answers, with examples where necessary.
(a) Every cyclic group has a unique generator.
(b) Any element of a cyclic group is a generator of the group.
(c) The quadratic equation $x^{2}=e$ has at most two solutions in any group.
(d) The quadratic equation $x^{2}=e$ has at most two solutions in any cyclic group.
(e) There exists an abelian group of order n for all $n>0$.
(f) If $G \neq\{e\}$ is a cyclic group with only 1 generator, then $|G|=2$.

Question 7. Recall that \mathbb{Z}_{8} is the group $\{0,1,2, \ldots, 7\}$ under addition mod 8 .
(a) Write down all the elements of the cyclic subgroups $\langle 0\rangle,\langle 1\rangle,\langle 2\rangle,\langle 3\rangle,\langle 4\rangle,\langle 5\rangle,\langle 6\rangle$ and $\langle 7\rangle$.
(b) Which elements of \mathbb{Z}_{8} are generators of the entire group?

Question 8. Draw subgroup diagrams of $\mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{8}$, and \mathbb{Z}_{12}.

Question 9. Let $G \neq\{e\}$ be a group whose only subgroups are $\{e\}$ and G. Prove that G must be cyclic, then prove that its order is prime.

Question 10. Find 3 cyclic groups of 3 different finite orders such that each one has precisely 4 generators.

