MTH 236, Spring 2024 - Homework 3

Due on Friday, February 9 at 11:59pm on gradescope

Question 1. True or false? Justify your answers.

1. Any two groups of order 3 are isomorphic.
2. Any two groups of order 4 are isomorphic.
3. Every group of at most four elements is abelian.

Question 2. Are the following groups isomorphic? Either way, give a proof. If the groups are isomorphic, write down an explicit isomorphism.

1. $\langle\mathbb{Q},+\rangle$ and $\langle\mathbb{R},+\rangle$
2. $\langle\mathbb{R},+\rangle$ and $\left\langle\mathbb{R}^{*}, \cdot\right\rangle$
3. $\left\langle\mathbb{C}^{*}, \cdot\right\rangle$ and $\left\langle\mathbb{R}^{*}, \cdot\right\rangle\left(\right.$ Fact: $\left.\left|\mathbb{C}^{*}\right|=\left|\mathbb{R}^{*}\right|\right)$
4. $\langle\mathbb{R},+\rangle$ and $\left\langle\mathbb{R}^{+}, \cdot\right\rangle$ (Hint: do you know a function from calculus that changes multiplication into addition, or vice versa?)
5. G and H, where G is the set of (infinite) sequences of integers under the operation + , that is, $a \in G$ is of the form $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ where each $a_{i} \in \mathbb{Z}$, and

$$
\left(a_{1}, a_{2}, a_{3}, \ldots\right)+\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \ldots\right),
$$

and H is the set of functions $f: \mathbb{Q} \rightarrow \mathbb{Z}$ under the operation + (addition of functions).

Question 3. Let G be a group and H_{1} and H_{2} be subgroups of G.

1. Must the intersection $H_{1} \cap H_{2}$ be a subgroup of G ? If true give a proof. If false, give a counterexample.
2. Answer the same question for the union $H_{1} \cup H_{2}$.

Question 4. Let G be an abelian group.

1. $H=\left\{a^{2} \mid a \in G\right\}$ be the set of all squares in G. Prove that H is a subgroup of G.
2. Let $H=\left\{a \in G \mid a^{2}=e\right\}$. Prove that H is a subgroup of G.

Question 5. Let G be a group and H a subset of G. Define a relation \sim on G by $a \sim b$ if and only if $a^{-1} b \in H$. Suppose that H is a subgroup of G and prove that \sim is an equivalence relation on G. What is the equivalence class of the identity element? (Recall that the equivalence class of x is the set $\bar{x}=\{a \mid a \sim x\}$.)

Question 6. Let G be a finite group and $a \in G$. Prove that $a^{n}=e$ for some integer $n \geq 1$.

Question 7. Let G be a group with a nonempty finite subset H that is closed under multiplication (that is, under the group operation).
(a) Prove that H must be a subgroup of G.
(b) Give an example to show that the result is no longer true if we do not assume that the subset H is finite.

Question 8. Let G be a group and suppose that $g \in G$ is the unique element of G other than the identity e that equals its own inverse. Prove that g commutes with all elements of G, that is, $g a=a g$ for all $x \in G$. [Hint: Show that $a g a^{-1} \neq e$ for any $a \in G$, then find the inverse of $a g a^{-1}$.]

Question 9. Let $m, n \in \mathbb{Z}$, and define $H_{m, n}$ to be the set of all possible "linear combinations" of m and n, so that $H_{m, n}=\{a m+b n \mid a, b \in \mathbb{Z}\}$.
(a) Prove that $H_{m, n}$ is a subgroup of $\langle\mathbb{Z},+\rangle$.
(b) Prove that if K is any subgroup of $\langle\mathbb{Z},+\rangle$ such that $m \in K$ and $n \in K$, then $H_{m, n} \leq K$. (This shows that $H_{m, n}$ is the smallest subgroup containing both m and n.)

