MTH 236, Spring 2024 - Homework 2

Due on Friday, February 2 at 11:59pm on gradescope

Question 1. Let S be a set with n elements. Explain your answers to the following.
(a) How many binary operations can be put on S ?
(b) How many commutative binary operations can be put on S ?

Question 2. The table below can be completed to define an associative binary operation * on $\{a, b, c, d\}$. Compute the missing entries, showing all your reasoning. (The way to read the table is that $x * y$ is found in the row corresponding to x on the left and y on top. For example, $b * d=c$ and $d * b=b$.)

$*$	a	b	c	d
a	a	b	c	d
b	b	b	c	c
c				
d	d	b	c	a

Question 3. For each of the following you are given a set A and a binary operation *. Determine whether the operation is commutative and whether it is associative (for each property, either show that it has that property or find a counterexample). You may use that the usual addition and multiplication on \mathbb{R} (and therefore all subsets of \mathbb{R}) are commutative and associative.
(a) $A=\mathbb{Q}, *$ defined by $a * b=5 a b$.
(b) $A=\mathbb{Q}, *$ defined by $a * b=5 a b-1$.
(c) $A=\mathbb{Z}$, * defined by $a * b=a-b+1$
(d) $A=\mathbb{N}, *$ defined by $a * b=3^{a+b}$.

Question 4. Is it true that every commutative binary operation on a set $A=\{a, b\}$ with exactly two elements must also be associative? Give a proof or a counterexample.

Question 5 True or false? Justify your answers.

1. In a group $\langle G, *\rangle$ for any $a \in G$, there exists $x \in G$ that satisfies $x * x=a$.
2. In the group table for a group $\langle G, *\rangle$, each element of G appears exactly once in each row and exactly once in each column.

Question 6 For each of the following, determine whether the set G is a group under the operation $*$. Justify your answers. $M_{n}(\mathbb{R})$ is the set of $n \times n$ matrices with entries in $\mathbb{R}, \operatorname{det}(A)$ is the determinant of the matrix A, and I_{n} is the $n \times n$ identity matrix. You may assume the fact from linear algebra that multiplication of matrices is associative (as well as any other facts you know about matrices and determinants).

1. $G=3 \mathbb{Z}=\{3 n \mid n \in \mathbb{Z}\}, a * b=a+b$.
2. $G=3 \mathbb{Z}, a * b=a+2 b$.
3. $G=\mathbb{R}^{*}$ (the nonzero real numbers), $a * b=|a b|$.
4. $G=\{c+d \sqrt{2}: c \in \mathbb{Q}, d \in \mathbb{Q}$, and c, d are not both zero $\}, a * b=a b$.
5. $G=\mathbb{R}^{+}, a * b=\sqrt{a b}$.
6. $G=M_{2}(\mathbb{R}), A * B=A B$ (multiplication of matrices).
7. $G=\left\{A \in M_{2}(\mathbb{R}) \mid \operatorname{det}(A)=1\right\}, A * B=A B$.
8. $G=\left\{A \in M_{2}(\mathbb{R}) \mid A^{2}=I_{2}\right\}, A * B=A B$.

Question 7

1. Let $\langle G, *\rangle$ be a group in which every element of G is its own inverse. Prove that G is abelian (that is, $*$ is commutative).
2. Let $\langle G, *\rangle$ be a finite group with an even number of elements. Prove that there exists an element $a \neq e$ in G that equals its own inverse.
