MTH 236, Spring 2024 - Homework 2

Due on Friday, February 2 at 11:59pm on gradescope

Question 1. Let S be a set with n elements. Explain your answers to the following.

- (a) How many binary operations can be put on S?
- (b) How many commutative binary operations can be put on S?

Question 2. The table below can be completed to define an associative binary operation * on $\{a, b, c, d\}$. Compute the missing entries, showing all your reasoning. (The way to read the table is that x * y is found in the row corresponding to x on the left and y on top. For example, b * d = c and d * b = b.)

*	a	b	c	d
a	a	b	с	d
b	b	b	с	c
c				
d	d	b	с	a

Question 3. For each of the following you are given a set A and a binary operation *. Determine whether the operation is commutative and whether it is associative (for each property, either show that it has that property or find a counterexample). You may use that the usual addition and multiplication on \mathbb{R} (and therefore all subsets of \mathbb{R}) are commutative and associative.

- (a) $A = \mathbb{Q}$, * defined by a * b = 5ab.
- (b) $A = \mathbb{Q}$, * defined by a * b = 5ab 1.
- (c) $A = \mathbb{Z}$, * defined by a * b = a b + 1
- (d) $A = \mathbb{N}$, * defined by $a * b = 3^{a+b}$.

Question 4. Is it true that every commutative binary operation on a set $A = \{a, b\}$ with exactly two elements must also be associative? Give a proof or a counterexample.

Question 5 True or false? Justify your answers.

- 1. In a group $\langle G, * \rangle$ for any $a \in G$, there exists $x \in G$ that satisfies x * x = a.
- 2. In the group table for a group $\langle G, * \rangle$, each element of G appears exactly once in each row and exactly once in each column.

Question 6 For each of the following, determine whether the set G is a group under the operation *. Justify your answers. $M_n(\mathbb{R})$ is the set of $n \times n$ matrices with entries in \mathbb{R} , det(A) is the determinant of the matrix A, and I_n is the $n \times n$ identity matrix. You may assume the fact from linear algebra that multiplication of matrices is associative (as well as any other facts you know about matrices and determinants).

- 1. $G = 3\mathbb{Z} = \{3n | n \in \mathbb{Z}\}, a * b = a + b.$
- 2. $G = 3\mathbb{Z}, a * b = a + 2b.$
- 3. $G = \mathbb{R}^*$ (the nonzero real numbers), a * b = |ab|.
- 4. $G = \{c + d\sqrt{2} : c \in \mathbb{Q}, d \in \mathbb{Q}, \text{ and } c, d \text{ are not both zero}\}, a * b = ab.$

5.
$$G = \mathbb{R}^+, a * b = \sqrt{ab}.$$

- 6. $G = M_2(\mathbb{R}), A * B = AB$ (multiplication of matrices).
- 7. $G = \{A \in M_2(\mathbb{R}) \mid \det(A) = 1\}, A * B = AB.$
- 8. $G = \{A \in M_2(\mathbb{R}) \mid A^2 = I_2\}, A * B = AB.$

Question 7

- 1. Let $\langle G, * \rangle$ be a group in which every element of G is its own inverse. Prove that G is abelian (that is, * is commutative).
- 2. Let $\langle G, * \rangle$ be a finite group with an even number of elements. Prove that there exists an element $a \neq e$ in G that equals its own inverse.