MTH 236, Spring 2024 - Homework 13

Due on April 26th at 11:59pm on gradescope

1. True or false? Provide brief justifications for your answers.
(a) $a^{p-1} \equiv 1(\bmod p)$ for all integers a and primes p.
(b) $\varphi(n)$ can never equal n for a positive integer $n \geq 2$ (where $\varphi(n)$ represents the Euler φ function).
(c) There exists a ring homomorphism $\phi: \mathbb{Q} \longrightarrow \mathbb{Q}$ whose kernel is \mathbb{Z}.
(d) Every factor ring of a commutative ring is a commutative ring
(e) An ideal of a ring with unity is the entire ring if and only if it contains the multiplicative identity.
2. Find $q(x)$ and $r(x)$ such that $f(x)=q(x) g(x)+r(x)$ with $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$
(a) $f(x)=x^{6}+3 x^{5}+x+1$ and $g(x)=x^{2}+2 x-1$ in $\mathbb{Z}_{7}[x]$.
(b) $f(x)=x^{6}+3 x^{5}+x+1$ and $g(x)=3 x^{2}+2 x-1$ in $\mathbb{Z}_{7}[x]$.
(c) $f(x)=x^{4}+5 x^{3}-3 x^{2}$ and $g(x)=5 x^{2}-x+2$ in $\mathbb{Z}_{11}[x]$.
3. (a) Show that $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{5}[x]$ and in $\mathbb{Z}_{29}[x]$.
(b) Show that $x^{3}-a$ is irreducible in $\mathbb{Z}_{7}[x]$ unless $a=0$ or ± 1.
(c) Determine how $x^{5}+1$ factors into irreducible polynomials in $\mathbb{Z}_{2}[x]$.
4. Prove that every (ring) homomorphism from a field to a ring that is not one-to-one, must be trivial i.e., maps everything in the field to 0 .
5. Let R and R^{\prime} be rings, $\phi: R \mapsto R^{\prime}$ a ring homomorphism and N an ideal of R.
(a) Prove that $\phi[N]$ is an ideal of $\phi[R]$.
(b) Give an example to show that $\phi[N]$ need not be an ideal of R^{\prime}.
(c) Let N^{\prime} be an ideal of $\phi[R]$. Prove that $\phi^{-1}\left[N^{\prime}\right]$ is an ideal of R.
6. Let R be a ring and let I, J be two ideals in R.
(a) Prove that $I \cap J$ is an ideal of R. Show it is the largest ideal contained in both I and J, in the sense that every ideal contained in both I and J is a subset of $I \cap J$.
(b) Define $I+J$ by

$$
I+J=\{x+y \mid x \in I, y \in J\}
$$

Prove that $I+J$ is an ideal. Show it is the smallest ideal containing both I and J, in the sense that every ideal containing both I and J must also contain $I+J$.
7. Let R be a commutative ring. An element $a \in R$ is said to be nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}^{+}$.
(a) Prove that the set of all nilpotent elements

$$
N=\left\{a \in R \mid a^{n}=0 \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

is an ideal of R. [Hint: If $a^{n}=0$ and $b^{m}=0$, consider $(a+b)^{(m+n)}$.]
(b) Now prove that the only nilpotent element in the factor ring R / N is the zero coset $N=0+N$.
8. For each of the following, give an example if possible. If not possible, briefly explain why not.
(a) A commutative ring that does not have a unity element.
(b) A commutative ring with unity that is not an integral domain.
(c) A non-commutative ring that has a unity element.
(d) A non-commutative ring that does not have a unity element.
(e) A field that is not an integral domain.
(f) An integral domain that is not a field.
(g) A finite integral domain that is not a field.

