MTH 236, Spring 2024 - Homework 12

Due on April 19th at 11:59pm on gradescope

1. The factor group $\mathbb{Z} / m \mathbb{Z}$ can be turned into a ring for any integer $m>0$ by defining the product $(a \bmod m)(b \bmod m)=a b \bmod m$. The resulting ring is isomorphic to the ring \mathbb{Z}_{m}. From now on, let us identify \mathbb{Z}_{m} with $\mathbb{Z} / m \mathbb{Z}$ for all positive integers m. (This just means we think of the elements of \mathbb{Z}_{m} as equivalence classes mod m.)

Suppose that r and s are relatively prime. Define a map $\phi: \mathbb{Z}_{r s} \longrightarrow \mathbb{Z}_{r} \times Z_{s}$ by $\phi(n)=$ $(n \bmod r, n \bmod s)$ where n is an element of $\mathbb{Z}_{r s}(o, r$ equivalently, an integer $\bmod r s)$.
(a) Check that ϕ is well defined. That is, check that if $n \equiv n^{\prime} \bmod r s$, then $\phi(n)=\phi\left(n^{\prime}\right)$.
(b) Check that ϕ is a ring homomorphism.
(c) Prove that ϕ is a ring isomorphism. [Hint: Either prove that ϕ is onto and use a counting argument to show it's one-to-one, or prove that ϕ is one-to-one and use a counting argument to show that ϕ is onto. You will need to use the fact that r and s are relatively prime here.]
2. The purpose of this problem is to prove Wilson's theorem:

Wilson's theorem: Let $n \geq 2$ be an integer. Then $(n-1)!\equiv-1(\bmod n)$ if and only if n is prime.
(a) Show that if n is not prime, then n has a divisor a with the properties that $n>a>1$ and a divides $(n-1)$!. Suppose that $(n-1)!\equiv-1(\bmod n)$, and come up with a contradiction. [Hint: Force a to divide 1.] This proves one direction of Wilson's theorem.
(b) Show that if p is prime, then 1 and -1 are the only elements of \mathbb{Z}_{p} that are their own multiplicative inverses. [Hint: Consider the equation $x^{2}-1=0$.]
(c) Use part (b) to show that, if p is prime, then

$$
2 \cdot 3 \cdots(p-2) \equiv 1 \quad(\bmod p)
$$

Conclude that if p is prime, then $(p-1)!\equiv-1(\bmod p)$, proving the other direction of Wilson's theorem.
(d) Use Wilson's theorem to find 28 ! (mod 31$)$, and justify your answer. Your answer should be a number in $\{0,1, \ldots, 30\}$.
3. (a) Find $3^{2015}(\bmod 17)$ and justify your answer. Your answer should be a number in $\{0,1, \ldots, 16\}$.
(b) Find $3^{2015}(\bmod 16)$ and justify your answer. Your answer should be a number in $\{0,1, \ldots, 15\}$.
4. (a) Prove that $n^{31} \equiv n(\bmod 2046)$ for all integers n. [Hint: $2046=2 \cdot 3 \cdot 11 \cdot 31$.]
(b) Improve on the number 2046 appearing in part (a). That is, find an integer m that is larger than 2046 such that $n^{31} \equiv n(\bmod m)$, and briefly justify your answer.
5. p 209 Exercises 1, 4, 8, 9

