MTH 236, Spring 2024 - Homework 11

Due on April 12th at 11:59pm on gradescope

- 1. Let $S \subseteq \mathbb{R}$ be defined by $S = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}.$
 - (a) Show that S is a ring under the usual addition and multiplication.
 - (b) Show that S is not a field.

(c) Show that if $a + b\sqrt{3} = c + d\sqrt{3}$ for $a, b, c, d \in \mathbb{Z}$, then a = c and b = d. (Use the fact that $\sqrt{3}$ is irrational.)

(d) Show that the units of S are precisely the elements $a + b\sqrt{3}$ with $a^2 - 3b^2 = \pm 1$. (Suppose $(a + b\sqrt{3})(c + d\sqrt{3}) = 1$. Using part (c), show that ad + bc = 0. Then compute $(a - b\sqrt{3})(c - d\sqrt{3})$. Finally, show that $(a^2 - 3b^2)(c^2 - 3d^2) = 1$, and use what you know about the units of \mathbb{Z} .)

(e) Note that $R' = \left\{ \begin{bmatrix} a & 3b \\ b & a \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$ in a ring under the usual operations of addition and multiplication. You are not asked to confirm this. Prove that the map $\phi : R \mapsto R'$ defined by $\phi(a + b\sqrt{3}) = \begin{bmatrix} a & 3b \\ b & a \end{bmatrix}$ is a ring isomorphism.

- 2. (a) Find all the units for each of the following rings. Justify your answers briefly.
 - i. \mathbb{Z}_{15} .
 - ii. ℤ₁₁.
 - iii. $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}_3$.
 - (b) How many units are in $M_2(\mathbb{Z}_3)$, the ring of all 2×2 matrices with entries in \mathbb{Z}_3 ? Briefly justify your answer.
 - (c) Let R be a ring with multiplicative identity and U be the set of all units in R. Prove that U is a group under multiplication.
 - (d) Prove that for any ring R, no element $a \in R$ is both a unit and a zero divisor.
 - (e) Show that if ab = 1 in a ring R with multiplicative identity 1 and no zero divisors, then ba = 1 also (even if the ring is not a commutative ring).
- 3. Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.

- 4. For each of the following, find all solutions of the given equation in the given ring or show there are no solutions.
 - (i) 4x = 2 in Z₁₃.
 (ii) 4x = 2 in Z₈.
 (iii) x² + 4x − 2 = 0 in Z₆.

(iv)
$$x^2 - 1 = 0$$
 in \mathbb{Z}_8

- (v) $x^2 + 4x + 3 = 0$ in \mathbb{Z}_{15} .
- 5. True or false? Provide brief justifications for your answers.
 - (a) $a^{p-1} \equiv 0 \pmod{p}$ for all integers a and primes p.
 - (b) $\varphi(n)$ can never equal n for a positive integer $n \ge 2$ (where $\varphi(n)$ represents the Euler φ function).
 - (c) Let $n \ge 2$ be an integer. The units in \mathbb{Z}_n are all numbers in the set $\{1, 2, 3, \ldots, n-1\}$ which are relatively prime to n.
 - (d) In a commutative ring with unity, the product of two units is always a unit.
 - (e) In a commutative ring with unity, the product of two non-units is always a non-unit.
 - (f) In a commutative ring with unity, the product of a unit and a non-unit is never a unit.
- 6. Determine the characteristic of each of the following rings.
 - (i) $\mathbb{Z} \times \mathbb{Q}$.
 - (ii) $\mathbb{Z}_4 \times \mathbb{Z}_5$.
 - (iii) $\mathbb{Z}_4 \times \mathbb{Z}_6$.
- 7. Let p be a prime, in which case \mathbb{Z}_p is a field. It can be shown that the group \mathbb{Z}_p^* of nonzero elements of \mathbb{Z}_p under multiplication is actually cyclic. You do not have to prove this in general, but confirm this in the special case p = 13 by finding a generator for the group \mathbb{Z}_{13}^* and justifying your answer.
- 8. Find all positive integers n such that \mathbb{Z}_n contains a subring isomorphic to \mathbb{Z}_2 . Justify your answer.
- 9. Let R be the ring of all *smooth* functions from \mathbb{R} to \mathbb{R} (i.e. all functions from \mathbb{R} to \mathbb{R} that have derivatives of all orders) under the usual multiplication and addition. Is the map $\Phi: R \to R$ defined by $\Phi(f)(x) = f'(x)$ a homomorphism of the underlying additive groups? Is it also a ring homomorphism? Why or why not?