MTH 236, Spring 2024 - Homework 10

Due on April 5th at 11:59pm on gradescope

1. Show that $\mathbb{R} \times \mathbb{R}$ and \mathbb{C} are not isomorphic as rings, but that the additive groups $\langle \mathbb{R} \times \mathbb{R}, + \rangle$ and $\langle \mathbb{C}, + \rangle$ are isomorphic.

2. Let S be the set of matrices
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 with $a, b \in \mathbb{R}$.

- (a) Show that S is a subring of $M_2(\mathbb{R})$.
- (b) Show that S is isomorphic (as a ring) to \mathbb{C} .
- 3. Describe all ring homomorphisms from \mathbb{Z} to $\mathbb{Z} \times \mathbb{Z}$. Which are one-to-one? Onto?
- 4. An element x in a ring R is called an *idempotent* if $x = x^2$. Let R be a ring in which all elements are idempotents (such a ring is called Boolean). Prove that

(a) Every element of a Boolean ring R is its own additive inverse. (That is, R has characteristic 2.)

- (b) Every Boolean ring is commutative . [Hint: Look at $(x + y)^2$.]
- (c) Show that a division ring contains exactly two idempotents.