Math 236: Abstract Algebra

Midterm II
April 2, 2024

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Your University email \qquad

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: \qquad

Instructions:

- The use of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. You must be physically separated from your cell phone.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the spaces provided.
- You are responsible for checking that this exam has all 6 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
TOTAL	50	

1. (10 points)

(a) Consider the group $G=\mathbb{Z}_{7} \times \mathbb{Z}_{12}$. Let K be the subgroup generated by $(1,2)$ in G and find the order of the element $(1,1)+K$ in G / K.

Sol. $|G|=12 * 7=84,|K|=\operatorname{lcm}(7,6)=42$, so that $|G / K|=84 / 42=2$. Hence, the order is 1 or 2 , but $(1,1) \notin K$, as the second co-ordinate of element of K is even mod 12 , being $2 n$ modulo 12 . So the order is 2 .

There are various other ways to see the whole answer or just the last part: (i) Order of $(1,1)$ is $\operatorname{lcm}(7,12)=84$, so that $(1,1) \notin K$, (ii) $(2,2)=37(1,2) \in K$, but $(1,1) \notin K$ as above. So the order is 2 . (iii) $(1,1)-(1,2)=(0,-1)$ gives another coset representative, which is not in K, as above, but $2(0,-1)=-7(1,2)$, so that the order is 2 .
(b) Find all abelian groups of order 8 and order 36 up to isomorphism. Indicate which ones on your lists are cyclic.

Sol. (i) Z_{8} cyclic, $Z_{4} \times Z_{2}$ and $Z_{2} \times Z_{2} \times Z_{2}$.
(ii) Z_{36} cyclic, $Z_{2} \times Z_{2} \times Z_{9}, Z_{4} \times Z_{3} \times Z_{3}, Z_{2} \times Z_{2} \times Z_{3} \times Z_{3}$.
(Note $Z_{36}=Z_{4} \times Z_{9}$, the second is $Z_{2} \times Z_{18}$ etc.)
If you use the invariant factors, the answer (i) would look the same, but the answer (ii) would be Z_{36} cyclic, $Z_{2} \times Z_{18}, Z_{3} \times Z_{12}, Z_{6} \times Z_{6}$.

2. (10 points)

(a) Show that if H is a subgroup of a group G and N is a normal subgroup of G then $H \cap N$ is a normal subgroup of H. (You may assume $H \cap N$ is a subgroup of H, so you just need to show it is normal.)

Sol. If $x \in H \cap N$, and $h \in H$, then $h x h^{-1}$ is in N, as N is normal, and it is also in H by the closure properties for the inverse and the multiplication for the group H. So, it is in the intersection, which is thus normal in H.

Note: The intersection need not be normal in G.
(b) Show that every normal subgroup of G having only two elements is contained in $Z(G)$.

Sol. If $N=\{e, n\}$ is a normal subgroup of G with 2 elements, e being the identity, then $e \in Z(G)$ as usual, and normality implies that for given any $g \in G, g n g^{-1}$ is in N, and as it cannot be e (by cancellation law), it has to be n forcing $g n=n g$ for all $g \in G$. Thus $n \in Z(G)$. Thus, $N \subset Z(G)$.
(c) Prove that if N is a proper nontrivial normal subgroup of S_{10} then $N=A_{10}$. (Hint: You may use that A_{n} is simple for $n \geq 5$.)

Sol. Assume N is not A_{10}. By part (a), $N \cap A_{10}$ is normal in A_{10} and is thus trivial by simplicity of A_{10}. Thus N contains an odd permutation. Product of any two odd permutations in N is even, and so has to be e, by triviality above. So the intersection has to contain exactly 2 elements, and thus by part (b), it is in center of S_{10}, which is trivial, a contradiction. (We need not use the fact that the center is trivial: N being normal, it contains all elements of the same cycle type as any given element in it, so cannot just contain two elements, as there is one element of it of order 2).
3. (10 points) Circle True or False. No justification needed.
(a) True False Suppose G and G^{\prime} are finite groups with $|G|=p$, prime and $\left|G^{\prime}\right|=q$, prime. If $\phi: G \rightarrow G^{\prime}$ is a group homomorphism then p must equal q and ϕ must be an isomorphism.

Sol. F. ϕ can be trivial.
(b) True False If G is a finite abelian group and d is a divisor of $|G|$ then G has a subgroup of order d.

Sol. T. Theorem we proved, as a corollary of structure theorem for finite abelian groups.
(c) True False A homomorphism is an injection if and only if its kernel contains only the identity. Sol. T. Theorem we proved.
(d) True False It is possible to have a one-to-one homomorphism from some group of order 9 into some group of order 12 .

Sol. F. Its image would be an order 9 subgroup of an order 12 group, contradicting Lagrange's theorem.
(e) True False Given a group G of order 90, it is always possible to have a one-to-one homomorphism from any group of order 9 into G.

Sol. F. For example, $G=Z_{3} \times Z_{3} \times Z_{10}$ does not have Z_{9} as subgroup.

4. (10 points)

(a) Define a conjugacy class of an element g_{0} in a group G. If G is finite, explain why the number of elements in it divides the order of G.

Sol. The conjugacy class c in G of g_{0} is defined to be $c=\left\{g g_{0} g^{-1}: g \in G\right\}$. It being the orbit of g_{0} under the conjugacy action of G on G, by the orbit-stabilizer theorem, its order divides the order of G.

Note : $\left\{g_{0} g g_{0}^{-1}: g \in G\right\}$ is the whole group G and not the conjugacy class.
(b) Suppose that G is an abelian group of order $9 n$, where n is not divisible by 3 , and G has exactly a elements of order 3 . Find all possibilities values of a. Justify.

Sol. By the structure theorem of finite abelian groups, G is isomorphic to $Z_{9} \times G_{n}$ or to $Z_{3} \times Z_{3} \times G_{n}$ for some abelian group G_{n} of order n, and thus the lcm formula for orders of elements in direct products, we see that a is thus the number of elements of order 3 in either Z_{9} (in which case $a=2$, the elements being 3 or 6) or in $Z_{3} \times Z_{3}$ (in which case $a=8$, elements being any non-identity elements in it). Thus $a=2$ or 8 .

5. (10 points)

(a) Find the orders of $(2,0,2)$ and $(2,1,2)$ in $\mathbb{Z}_{4} \times \mathbb{Z} \times \mathbb{Z}_{7}$.

Sol. $\operatorname{ord}(2,0,2)=\operatorname{lcm}(4 / \operatorname{gcd}(2,4), 1,7 / \operatorname{gcd}(2,7))=\operatorname{lcm}(2,7)=14$. Since (the second component) 1 is an element of infinite order in Z, tghe second element has infinite order.
(b) Find the kernel of θ, and also find $\theta((2,-2))$, if you know that the homomorphism $\theta: \mathbb{Z} \times \mathbb{Z} \rightarrow S_{7}$ satisfies $\theta((1,0))=(1,2,3)$ and $\theta((0,1))=(4,5)(6,7)$.

Sol. Note that since the given permutations are disjoint, they commute and thus by the homomorphism property, $\theta((a, b))=(123)^{a}(45)^{b}(67)^{b}=e$ if and only if 3 divides a and 2 divides b. Thus, kernel θ is $3 Z \times 2 Z=\{(3 n, 2 m): n, m \in Z\}$.
$\theta((2,-2))=(123)^{2}(45)^{-2}(67)^{-2}=(123)^{2}=(132)$.
Note: The kernel is not $2 Z \times 3 Z$ and it is not $<(3,2)>=\{(3 n, 2 n): n \in Z\}$.

