Q2, HW 4

- (1) Determine subspaces U and W of \mathbb{R}^3 such that $\dim(U) = m$, $\dim(W) = n$, $m \ge n$, and both $\dim(U \cap W) < n$ and $\dim(U + W) < m + n$.
- (2) Suppose that U and W are subspaces of a finite-dimensional vector space V and V = U + W. Show that $\dim(U) + \dim(W) \ge \dim(V)$ with equality if and only if $U \cap W = \{0\}$.
- (3) If $\dim(U) + \dim(W) = \dim(V)$, does it follow that V = U + W? Prove this is true or provide a counter example.

Solution:

(1) Sketch of solution: There are many choices. For example, $W_1 = \text{span}\{(1, 0, 0), (0, 1, 0)\}$ and $W_2 = \text{span}\{(1, 0, 0), (0, 0, 1)\}$.

(2) Since V = U + W, every $x \in V$ can be written as an element in U plus an element in V. Let β_U be a basis for U and β_W a basis for W. Then $\beta_U \cup \beta_W$ is a spanning set for V. If dim(V) = n, the size of a spanning set must be at least n. Thus $|\beta_U| + |\beta_W| = \dim(U) + \dim(V) \ge \dim(V)$.

Suppose dim(U) + dim(V) = n. Then $\beta_U \cup \beta_W$ constitutes a spanning set for V of size n. Then it is a basis, so indpendent. If $x \in U \cap W$, $x = \sum a_i v_i = \sum b_i v_j$, where the $v_i \in \beta_U$ and the $v_j \in \beta_W$. Then $x - x = \sum a_i v_i - \sum b_i v_j = \mathbf{0}$. This representation of zero is non-trivial unless x = 0. Hence $U \cap W = \{\mathbf{0}\}$.

Conversely, suppose $U \cap W = \{\mathbf{0}\}$. Then $V = U \oplus W$., so every $x \in V$ can be written uniquely as x = u + w where $u \in U$ and $w \in W$. Since u and w in turn can written exactly one way as linear combinations of vectors in β_U and β_W respectively, we have that $\beta_U \cup \beta_W$ is a basis for V. Hence $|\beta_U \cup \beta_W| = n$. Since $\beta_U \cap \beta_W$ is empty, $|\beta_U| + |\beta_W| = |\beta_U \cup \beta_W| = n$. (3) No. Take for example $U = \text{span}\{(1,0,0), (0,1,0)\}$ and $W = \text{span}\{(1,0,0)\}$ in \mathbb{R}^3 ..

Q3, HW4

Suppose V is a vector space over F, and $\dim(V) = n$. Find subspaces W_1, W_2, \ldots, W_n of V such that

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_n.$$

Solution: The idea here is that one could let W_i be the span of the *i*th vector in any basis for V. Then use part (2).