Q2, HW 4

(1) Determine subspaces U and W of \mathbb{R}^{3} such that $\operatorname{dim}(U)=m, \operatorname{dim}(W)=n, m \geq n$, and both $\operatorname{dim}(U \cap W)<n$ and $\operatorname{dim}(U+W)<m+n$.
(2) Suppose that U and W are subspaces of a finite-dimensional vector space V and $V=U+W$. Show that $\operatorname{dim}(U)+\operatorname{dim}(W) \geq \operatorname{dim}(V)$ with equality if and only if $U \cap W=\{0\}$.
(3) If $\operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(V)$, does it follow that $V=U+W$? Prove this is true or provide a counter example.

Solution:

(1) Sketch of solution: There are many choices. For example, $W_{1}=\operatorname{span}\{(1,0,0),(0,1,0)\}$ and $W_{2}=\operatorname{span}\{(1,0,0),(0,0,1)\}$.
(2) Since $V=U+W$, every $x \in V$ can be written as an element in U plus an element in V. Let β_{U} be a basis for U and β_{W} a basis for W. Then $\beta_{U} \cup \beta_{W}$ is a spanning set for V. If $\operatorname{dim}(V)=n$, the size of a spanning set must be at least n. Thus $\left|\beta_{U}\right|+\left|\beta_{W}\right|=$ $\operatorname{dim}(U)+\operatorname{dim}(V) \geq \operatorname{dim}(V)$.

Suppose $\operatorname{dim}(U)+\operatorname{dim}(V)=n$. Then $\beta_{U} \cup \beta_{W}$ constitutes a spanning set for V of size n. Then it is a basis, so indpendent. If $x \in U \cap W, x=\sum a_{i} v_{i}=\sum b_{i} v_{j}$, where the $v_{i} \in \beta_{U}$ and the $v_{j} \in \beta_{W}$. Then $x-x=\sum a_{i} v_{i}-\sum b_{i} v_{j}=\mathbf{0}$. This representation of zero is non-trivial unless $x=0$. Hence $U \cap W=\{0\}$.

Conversely, suppose $U \cap W=\{\mathbf{0}\}$. Then $V=U \oplus W$., so every $x \in V$ can be written uniquely as $x=u+w$ where $u \in U$ and $w \in W$. Since u and w in turn can written exactly one way as linear combinations of vectors in β_{U} and β_{W} respectively, we have that $\beta_{U} \cup \beta_{W}$ is a basis for V. Hence $\left|\beta_{U} \cup \beta_{W}\right|=n$. Since $\beta_{U} \cap \beta_{W}$ is empty, $\left|\beta_{U}\right|+\left|\beta_{W}\right|=\left|\beta_{U} \cup \beta_{W}\right|=n$.
(3) No. Take for example $U=\operatorname{span}\{(1,0,0),(0,1,0)\}$ and $W=\operatorname{span}\{(1,0,0)\}$ in \mathbb{R}^{3}..

Q3, HW4

Suppose V is a vector space over F, and $\operatorname{dim}(V)=n$. Find subspaces $W_{1}, W_{2}, \ldots, W_{n}$ of V such that

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}
$$

Solution: The idea here is that one could let W_{i} be the span of the i th vector in any basis for V. Then use part (2).

